Theory and Numeric of Spectral Value Sets
暂无分享,去创建一个
[1] Y. S. Hung,et al. ANALYTIC PROPERTIES OF THE SINGULAR VALUES OF A RATIONAL MATRIX. , 1983 .
[2] K. Nomizu,et al. Characteristic roots and vectors of a diifferentiable family of symmetric matrices , 1973 .
[3] W. K. Hayman,et al. On the characteristic of functions meromorphic in the unit disk and of their integrals , 1964 .
[4] Kim-Chuan Toh,et al. Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..
[5] D. Hinrichsen,et al. Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .
[6] Robert D. Russell,et al. A COMPARISON OF COLLOCATION AND FINITE DIFFERENCES FOR TWO-POINT BOUNDARY VALUE PROBLEMS* , 1977 .
[7] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[8] S. H. Lui,et al. Computation of Pseudospectra by Continuation , 1997, SIAM J. Sci. Comput..
[9] Diederich Hinrichsen,et al. Spectral value sets: a graphical tool for robustness analysis , 1993 .
[10] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[11] Robert B. Burckel,et al. An introduction to classical complex analysis , 1979 .
[12] Thierry Braconnier. Fvpspack: a Fortran and PVM Package to Compute the Field of Values and Pseudospectra of Large Matric , 1996 .
[13] Diederich Hinrichsen,et al. On spectral variations under bounded real matrix perturbations , 1991 .
[14] D. Delchamps. State Space and Input-Output Linear Systems , 1987 .
[15] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[16] L. Gustavsson. Energy growth of three-dimensional disturbances in plane Poiseuille flow , 1981, Journal of Fluid Mechanics.
[17] Jack Dongarra,et al. Pvm: A Users' Guide and Tutorial for Network Parallel Computing , 1994 .
[18] Edward J. Davison,et al. A formula for computation of the real stability radius , 1995, Autom..
[19] L. Trefethen,et al. Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .
[20] S. C. Reddy,et al. Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.
[21] Lloyd N. Trefethen,et al. Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues , 1990 .
[22] L. Trefethen,et al. Stability of the method of lines , 1992, Spectra and Pseudospectra.
[23] P. Ioannou,et al. Optimal excitation of three‐dimensional perturbations in viscous constant shear flow , 1993 .
[24] V. Prasolov. Problems and theorems in linear algebra , 1994 .
[25] M. Crandall,et al. Bifurcation from simple eigenvalues , 1971 .
[26] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[27] Thomas Kailath,et al. Linear Systems , 1980 .
[28] Dan S. Henningson,et al. On the role of linear mechanisms in transition to turbulence , 1994 .
[29] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[30] G. Vainikko,et al. Funktionalanalysis der Diskretisierungsmethoden , 1976 .
[31] N. Higham,et al. Computing the field of values and pseudospectra using the Lanczos method with continuation , 1996 .
[32] G. Habetler,et al. A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability , 1969 .
[33] I. Herron. A completeness theorem for the linear stability problem of nearly parallel flows , 1982 .
[34] Näherungsverfahren zur Lösung von Operatorgleichungen , 1973 .
[35] Jack Dongarra,et al. Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems , 1995 .
[36] A. Böttcher,et al. Norms of Inverses, Spectra, and Pseudospectra of Large Truncated Wiener-Hopf Operators and Toeplitz Matrices , 1997 .
[37] Kazufumi Ito,et al. A uniformly differentiable approximation scheme for delay systems using splines , 1991 .
[38] R. Fletcher. Practical Methods of Optimization , 1988 .
[39] B. Bank,et al. Non-Linear Parametric Optimization , 1983 .
[40] Tosio Kato. Perturbation theory for linear operators , 1966 .
[41] S. Orszag. Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.
[42] G. Vainikko. Regular convergence of operators and approximate solution of equations , 1981 .
[43] G. Vainikko,et al. Approximative methods for nonlinear equations (two approaches to the convergence problem) , 1978 .
[44] A. Mayne. Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .
[45] D. Salamon. Structure and Stability of Finite Dimensional Approximations for Functional Differential Equations , 1985 .
[46] Hans Zwart,et al. An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.
[47] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[48] Kazufumi Ito,et al. Two Families of Approximation Schemes for Delay Systems , 1992 .
[49] Chi-Tsong Chen,et al. Linear System Theory and Design , 1995 .
[50] Martin Brühl. A curve tracing algorithm for computing the pseudospectrum , 1996 .
[51] Dan S. Henningson,et al. Pseudospectra of the Orr-Sommerfeld Operator , 1993, SIAM J. Appl. Math..
[52] Diederich Hinrichsen,et al. Stability Radii and Spectral Value Sets for Real Matrix Perturbations , 1993 .
[53] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[54] Anders Rantzer,et al. Real Perturbation Values and Real Quadratic Forms in a Complex Vector Space , 1998 .
[55] Gene H. Golub,et al. Matrix computations , 1983 .