Discontinuous Galerkin algorithms for fully kinetic plasmas

Abstract We present a new algorithm for the discretization of the non-relativistic Vlasov–Maxwell system of equations for the study of plasmas in the kinetic regime. Using the discontinuous Galerkin finite element method for the spatial discretization, we obtain a high order accurate solution for the plasma's distribution function. Time stepping for the distribution function is done explicitly with a third order strong-stability preserving Runge–Kutta method. Since the Vlasov equation in the Vlasov–Maxwell system is a high dimensional transport equation, up to six dimensions plus time, we take special care to note various features we have implemented to reduce the cost while maintaining the integrity of the solution, including the use of a reduced high-order basis set. A series of benchmarks, from simple wave and shock calculations, to a five dimensional turbulence simulation, are presented to verify the efficacy of our set of numerical methods, as well as demonstrate the power of the implemented features.

[1]  G. Hammett,et al.  A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse , 2015 .

[2]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[3]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[4]  G. I. Budker,et al.  THE RELATIVISTIC KINETIC EQUATION , 1956 .

[5]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[6]  William Daughton,et al.  The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments , 2015, 1511.00741.

[7]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[8]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[9]  Tünde Fülöp,et al.  Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement , 2016, The European Physical Journal D.

[10]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[11]  Bruce Yabsley,et al.  Search for scalar leptoquarks in pp collisions at s = 13 TeV with the ATLAS experiment , 2016 .

[12]  W. Matthaeus,et al.  Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma , 2007, 0801.0107.

[13]  Martin Campos Pinto,et al.  Handling the divergence constraints in Maxwell and Vlasov-Maxwell simulations , 2016, Appl. Math. Comput..

[14]  F. Califano,et al.  PROTON KINETIC EFFECTS IN VLASOV AND SOLAR WIND TURBULENCE , 2013, 1306.6455.

[15]  Kun Xu,et al.  A Unified Gas Kinetic Scheme for Continuum and Rarefied Flows V: Multiscale and Multi-Component Plasma Transport , 2016, 1609.05291.

[16]  Gian Luca Delzanno,et al.  On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods , 2016, Comput. Phys. Commun..

[17]  A. Lenard,et al.  PLASMA OSCILLATIONS WITH DIFFUSION IN VELOCITY SPACE , 1958 .

[18]  Claus-Dieter Munz,et al.  A Finite-Volume Method for the Maxwell Equations in the Time Domain , 2000, SIAM J. Sci. Comput..

[19]  G. Hammett,et al.  A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse , 2014, 1409.2520.

[20]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[21]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[22]  E. Sonnendrücker,et al.  Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law , 2017 .

[23]  Dinshaw S. Balsara,et al.  A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector , 2016, J. Comput. Phys..

[24]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[25]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[26]  K. Klein,et al.  Characterizing fluid and kinetic instabilities using field-particle correlations on single-point time series , 2017, 1701.03687.

[27]  Vladimir Kolobov,et al.  Adaptive kinetic-fluid solvers for heterogeneous computing architectures , 2015, J. Comput. Phys..

[28]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system , 2013, J. Comput. Phys..

[29]  Yann Kempf Numerical and physical validation of Vlasiator -- A new hybrid-Vlasov space plasma simulation code , 2012 .

[30]  I Kourakis,et al.  Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Uri Shumlak,et al.  A high resolution wave propagation scheme for ideal Two-Fluid plasma equations , 2006, J. Comput. Phys..

[32]  G. Howes,et al.  Diagnosing collisionless energy transfer using field–particle correlations: Vlasov–Poisson plasmas , 2017, Journal of Plasma Physics.

[33]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[34]  F. Valentini,et al.  Numerical study of ion-cyclotron resonant interaction via hybrid-Vlasov simulations , 2010 .

[35]  James M. Stone,et al.  Pegasus: A new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics , 2013, J. Comput. Phys..

[36]  S. Servidio,et al.  VLASOV SIMULATIONS OF MULTI-ION PLASMA TURBULENCE IN THE SOLAR WIND , 2012, 1207.5379.

[37]  Pedro Velarde,et al.  Development of a Godunov method for Maxwell's equations with Adaptive Mesh Refinement , 2015, J. Comput. Phys..

[38]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[39]  C. Shonk,et al.  FORMATION AND STRUCTURE OF ELECTROSTATIC COLLISIONLESS SHOCKS. , 1970 .

[40]  A. Vaivads,et al.  Differential kinetic dynamics and heating of ions in the turbulent solar wind , 2016, 1611.04802.

[41]  A. Hakim,et al.  Extended MHD Modelling with the Ten-Moment Equations , 2008 .

[42]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[43]  Liang Wang,et al.  Comparison of multi-fluid moment models with Particle-in-Cell simulations of collisionless magnetic reconnection , 2014, 1409.0262.

[44]  Claus-Dieter Munz,et al.  A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes , 2000 .

[45]  Dinshaw S. Balsara,et al.  Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers , 2017, J. Comput. Phys..

[46]  Petr Hellinger,et al.  A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma , 2007, J. Comput. Phys..

[47]  Uppsala,et al.  Wave dispersion in the hybrid-Vlasov model: Verification of Vlasiator , 2013, 1311.3793.

[48]  J. Kirkwood The Statistical Mechanical Theory of Transport Processes I. General Theory , 1946 .

[49]  David C. Seal,et al.  A Simple and Effective High-Order Shock-Capturing Limiter for Discontinuous Galerkin Methods , 2015, 1507.03024.

[50]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[51]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[52]  Michael Barnes,et al.  AstroGK: Astrophysical gyrokinetics code , 2010, J. Comput. Phys..

[53]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[54]  W. Scales,et al.  Nonlinear saturation of the Weibel instability , 2017, 1705.07930.

[55]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes II. Transport in Gases , 1947 .

[56]  G. Howes,et al.  MEASURING COLLISIONLESS DAMPING IN HELIOSPHERIC PLASMAS USING FIELD–PARTICLE CORRELATIONS , 2016, 1607.01738.

[57]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[58]  Gianmarco Manzini,et al.  SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas , 2016 .

[59]  Yingda Cheng,et al.  A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations , 2011 .

[60]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[61]  W. Matthaeus,et al.  Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Yingda Cheng,et al.  Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..

[63]  J. Dougherty,et al.  Model Fokker—Planck Equations: Part 2. The equation for a multicomponent plasma , 1967, Journal of Plasma Physics.

[64]  Douglas N. Arnold,et al.  The Serendipity Family of Finite Elements , 2011, Found. Comput. Math..

[65]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[66]  Chi-Wang Shu,et al.  A Survey of Strong Stability Preserving High Order Time Discretizations , 2001 .

[67]  G. Hammett,et al.  Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma , 2017, Journal of Plasma Physics.

[68]  H. Koskinen,et al.  Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator , 2013 .

[69]  Bhuvana Srinivasan,et al.  Continuum Kinetic and Multi-Fluid Simulations of Classical Sheaths , 2016, 1610.06529.

[70]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[71]  Gregor E. Morfill,et al.  Relationship between the ion drag and electric forces in dense dust clouds , 2013 .