A Meshless Particle Method for Poisson and Diffusion Problems with Discontinuous Coefficients and Inhomogeneous Boundary Conditions

We present a meshless particle method for Poisson and diffusion problems on domains with discontinuous coefficients and possibly inhomogeneous boundary conditions. The method is based on a domain-decomposition approach with suitable interface and boundary conditions between regions of different diffusivities, and on using discretization-corrected particle strength exchange operators [B. Schrader, S. Reboux, and I. F. Sbalzarini, J. Comput. Phys., 229 (2010), pp. 4159--4182]. We propose and compare two methods: The first one is based on an immersed interface approach, where interfaces are determined implicitly using a simplified phase-field equation. The second method uses a regularization technique to transform inhomogeneous interface or boundary conditions to homogeneous ones with an additional continuous volume contribution. After presenting the methods, we demonstrate their capabilities and limitations on several one-dimensional and three-dimensional test cases with Dirichlet and Neumann boundary condi...

[1]  Charles S. Peskin,et al.  Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries , 1993 .

[2]  D. Hietel,et al.  A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures , 2007 .

[3]  John D. Towers Finite difference methods for approximating Heaviside functions , 2009, J. Comput. Phys..

[4]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[5]  Tim Colonius,et al.  A general deterministic treatment of derivatives in particle methods , 2002 .

[6]  Leslie Greengard,et al.  The Fast Generalized Gauss Transform , 2010, SIAM J. Sci. Comput..

[7]  Carlos H. Muravchik,et al.  A meshless method for solving the EEG forward problem , 2005, IEEE Transactions on Biomedical Engineering.

[8]  C. H. Woltersa,et al.  Numerical approaches for dipole modeling in finite element method based source analysis , 2007 .

[9]  Jung Hee Seo,et al.  A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries , 2011, J. Comput. Phys..

[10]  Bin He,et al.  A Finite Difference Method for Solving the Three-Dimensional EEG Forward Problem , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[11]  Hongkai Zhao,et al.  A grid based particle method for moving interface problems , 2009, J. Comput. Phys..

[12]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[13]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[14]  Frédéric Gibou,et al.  Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions , 2008, J. Comput. Phys..

[15]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[16]  R. Folch,et al.  Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  O. Faugeras,et al.  Generalized head models for MEG/EEG: boundary element method beyond nested volumes , 2006, Physics in medicine and biology.

[18]  Leslie Greengard,et al.  On the numerical solution of the heat equation I: Fast solvers in free space , 2007, J. Comput. Phys..

[19]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[20]  Ivo F. Sbalzarini,et al.  A self-organizing Lagrangian particle method for adaptive-resolution advection-diffusion simulations , 2012, J. Comput. Phys..

[21]  Cristina H. Amon,et al.  A novel method for modeling Neumann and Robin boundary conditions in smoothed particle hydrodynamics , 2010, Comput. Phys. Commun..

[22]  O. Demirel,et al.  A parallel particle method for solving the EEG source localization forward problem , 2011, Proceedings of the 6th International Symposium on Health Informatics and Bioinformatics.

[23]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[24]  Ivo F. Sbalzarini,et al.  Toward an Object-Oriented Core of the PPM Library , 2010 .

[25]  B. Engquist,et al.  Numerical approximations of singular source terms in differential equations , 2004 .

[26]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[27]  Jens Haueisen,et al.  Dipole models for the EEG and MEG , 2002, IEEE Transactions on Biomedical Engineering.

[28]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[29]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[30]  A. Mayo The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions , 1984 .

[31]  Ivo F. Sbalzarini,et al.  PPM - A highly efficient parallel particle-mesh library for the simulation of continuum systems , 2006, J. Comput. Phys..

[32]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[33]  Jean-Christophe Nave,et al.  A Correction Function Method for Poisson problems with interface jump conditions , 2010, J. Comput. Phys..

[34]  Petros Koumoutsakos,et al.  Simulations of (an)isotropic diffusion on curved biological surfaces. , 2006, Biophysical journal.

[35]  Ivo F. Sbalzarini,et al.  Discretization correction of general integral PSE Operators for particle methods , 2010, J. Comput. Phys..

[36]  Sandro Ianniello,et al.  A self-adaptive oriented particles Level-Set method for tracking interfaces , 2010, J. Comput. Phys..

[37]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[38]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .

[39]  Ivo F. Sbalzarini,et al.  Choosing the Best Kernel: Performance Models for Diffusion Operators in Particle Methods , 2012, SIAM J. Sci. Comput..

[40]  Olivier D. Faugeras,et al.  Symmetric BEM Formulation for the M/EEG Forward Problem , 2003, IPMI.

[41]  Ivo F. Sbalzarini,et al.  Abstractions and Middleware for Petascale Computing and Beyond , 2010, Int. J. Distributed Syst. Technol..

[42]  B. He,et al.  Solving the ECG forward problem by means of a meshless finite element method , 2007, Physics in medicine and biology.

[43]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[44]  Petros Koumoutsakos,et al.  Effects of organelle shape on fluorescence recovery after photobleaching. , 2005, Biophysical journal.

[45]  Phillip Colella,et al.  A cartesian grid embedded boundary method for the heat equation and poisson's equation in three dimensions , 2004 .

[46]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[47]  Zhilin Li,et al.  A note on immersed interface method for three-dimensional elliptic equations , 1996 .

[48]  Johannes Tausch,et al.  A fast method for solving the heat equation by layer potentials , 2007, J. Comput. Phys..

[49]  Y. D'Asseler,et al.  A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization , 2005 .

[50]  J. Kuhnert,et al.  Grid Free Method For Solving The Poisson Equation , 2001 .

[51]  Ying Sun,et al.  Sharp interface tracking using the phase-field equation , 2007, J. Comput. Phys..