Materials properties and device applications of semiconducting bismuth oxyselenide

Layered two‐dimensional (2D) materials have garnered marvelous attention in diverse fields, including sensors, capacitors, nanocomposites and transistors, owing to their distinctive structural morphologies and superior physicochemical properties. Recently, layered quasi‐2D materials, especially layered bismuth oxyselenide (Bi2O2Se), are of particular interest, because of their different interlayer interactions from other layered 2D materials. On this basis, this material offers richer and more intriguing physics, including high electron mobility, sizeable bandgap, and remarkable thermal and chemical durability, rendering it an utterly prospective contender for use in advanced electronic and optoelectronic applications. Herein, this article reviews the recent advances related with Bi2O2Se. Initially, its structural characterization, band structure, and basic properties are briefly introduced. Further, the synthetic strategies for the preparation of Bi2O2Se are presented. Furthermore, the diverse applications of Bi2O2Se in the field of electronics and optoelectronics, photocatalytic, solar cells and sensing were summarized in detail. Ultimately, the challenges and future perspectives of Bi2O2Se are included.image

[1]  You Zi,et al.  Functional Graphdiyne for Emerging Applications: Recent Advances and Future Challenges , 2023, Advanced Functional Materials.

[2]  X. Dai,et al.  MXene V2CTx Nanosheet/Bismuth Quantum Dot-Based Heterostructures for Enhanced Flexible Photodetection and Nonlinear Photonics , 2023, ACS Applied Nano Materials.

[3]  Mengke Wang,et al.  Emerging Xene‐Based Single‐Atom Catalysts: Theory, Synthesis, and Catalytic Applications , 2023, Advanced materials.

[4]  Congwei Tan,et al.  2D fin field-effect transistors integrated with epitaxial high-k gate oxide , 2023, Nature.

[5]  Bilu Liu,et al.  Salt-Assisted Low-Temperature Growth of 2D Bi2 O2 Se with Controlled Thickness for Electronics. , 2022, Small.

[6]  A. Vinu,et al.  Bi2O2Se: A rising star for semiconductor devices , 2022, Matter.

[7]  Shengzhi Zhao,et al.  Bismuthene quantum dots integrated D-shaped fiber as saturable absorber for multi-type soliton fiber lasers , 2022, Journal of Materiomics.

[8]  Congwei Tan,et al.  Strain-Free Layered Semiconductors for 2D Transistors with On-State Current Density Exceeding 1.3 mA μm-1. , 2022, Nano letters.

[9]  X. Zu,et al.  A review of the properties, synthesis and applications of lanthanum copper oxychalcogenides , 2022, Journal of Physics D: Applied Physics.

[10]  T. Zhai,et al.  Emerging two‐dimensional bismuth oxychalcogenides for electronics and optoelectronics , 2021, InfoMat.

[11]  Ye Zhang,et al.  Functional two-dimensional black phosphorus nanostructures towards next-generation devices , 2021 .

[12]  J. Y. Kwak,et al.  Low-Temperature and High-Quality Growth of Bi2O2Se Layered Semiconductors via Cracking Metal-Organic Chemical Vapor Deposition. , 2021, ACS nano.

[13]  Sharafat Ali,et al.  Facile synthesis of MoS2/Cu as trifunctional catalyst for electrochemical overall water splitting and photocatalytic CO2 conversion , 2021 .

[14]  Congwei Tan,et al.  Broadband Bi2O2Se Photodetectors from Infrared to Terahertz , 2021, Advanced Functional Materials.

[15]  X. Zu,et al.  Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors , 2020 .

[16]  Jiu-sheng Li,et al.  Bi2O2Se for broadband terahertz wave switching. , 2020, Applied optics.

[17]  Yanfeng Tang,et al.  Emerging Mono‐Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications , 2020, Advanced Functional Materials.

[18]  G. J. Snyder,et al.  Violation of the T−1 Relationship in the Lattice Thermal Conductivity of Mg3Sb2 with Locally Asymmetric Vibrations , 2020, Research.

[19]  T. Zhai,et al.  Self‐Driven WSe2/Bi2O2Se Van der Waals Heterostructure Photodetectors with High Light On/Off Ratio and Fast Response , 2020, Advanced Functional Materials.

[20]  L. Zan,et al.  Bi2O2Se as a novel co-catalyst for photocatalytic hydrogen evolution reaction , 2020 .

[21]  Haoshan Hao,et al.  Enhancement of Ca3Co4O9+δ thermoelectric properties by dispersing SiC nanoparticles , 2020 .

[22]  Yanfeng Tang,et al.  Recent Advances in Functional 2D MXene‐Based Nanostructures for Next‐Generation Devices , 2020, Advanced Functional Materials.

[23]  J. Qu,et al.  Progress Report on Property, Preparation, and Application of Bi2O2Se , 2020, Advanced Functional Materials.

[24]  Jinxiong Wu,et al.  Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors. , 2020, Nano letters.

[25]  Minmin Wang,et al.  Recent Advances in Semiconducting Monoelemental Selenium Nanostructures for Device Applications , 2020, Advanced Functional Materials.

[26]  Jinxiong Wu,et al.  Exploiting Two‐Dimensional Bi 2 O 2 Se for Trace Oxygen Detection , 2020 .

[27]  X. Zu,et al.  Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: Beyond the conventional 4-electron mechanism , 2020 .

[28]  Bilu Liu,et al.  High‐Fidelity Transfer of 2D Bi2O2Se and Its Mechanical Properties , 2020, Advanced Functional Materials.

[29]  T. Grasser,et al.  Native high-k oxides for 2D transistors , 2020, Nature Electronics.

[30]  Jinxiong Wu,et al.  A native oxide high-κ gate dielectric for two-dimensional electronics , 2020, Nature Electronics.

[31]  Ye Zhang,et al.  Highly stable MXene (V2CTx)-based harmonic pulse generation , 2020, Nanophotonics.

[32]  Bo Liu,et al.  Bidirectional All‐Optical Synapses Based on a 2D Bi2O2Se/Graphene Hybrid Structure for Multifunctional Optoelectronics , 2020, Advanced Functional Materials.

[33]  Jiecai Han,et al.  Bismuth Oxychalcogenide Nanosheet: Facile Synthesis, Characterization, and Photodetector Application , 2020, Advanced Materials Technologies.

[34]  Huangzhong Yu,et al.  2D Bi2O2Se with high mobility for high performance polymer solar cells. , 2020, ACS applied materials & interfaces.

[35]  X. Zu,et al.  High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron , 2020, Journal of Power Sources.

[36]  Guang Yang,et al.  Magnitude and spatial distribution control of the supercurrent in Bi2O2Se-based Josephson junction. , 2020, Nano letters.

[37]  Yifeng Wang,et al.  Enhanced thermoelectric properties of highly textured Bi2O2-Se1+ with liquid-phase mechanical exfoliation , 2020 .

[38]  Chunhua Lu,et al.  Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe , 2020 .

[39]  Q. Gao,et al.  Mechanical flexibility and strain engineered-band structures of monolayer Bi2O2Se , 2020 .

[40]  Ye Zhang,et al.  Emerging black phosphorus analogue nanomaterials for high-performance device applications , 2020 .

[41]  Jinxiong Wu,et al.  High-mobility flexible oxyselenide thin-film transistors prepared by solution-assisted method. , 2020, Journal of the American Chemical Society.

[42]  Congwei Tan,et al.  Optical Properties and Photocarrier Dynamics of Bi2O2Se Monolayer and Nanoplates , 2020, Advanced Optical Materials.

[43]  X. Zu,et al.  Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. , 2020, Journal of hazardous materials.

[44]  Guang Yang,et al.  Gate-tunable h/e -period magnetoresistance oscillations in Bi2O2Se nanowires , 2019, Physical Review B.

[45]  P. Chu,et al.  Biodegradable Bi2 O2 Se Quantum Dots for Photoacoustic Imaging-Guided Cancer Photothermal Therapy. , 2019, Small.

[46]  S. Qin,et al.  Near-Infrared Photoelectric Properties of Multilayer Bi2O2Se Nanofilms , 2019, Nanoscale Research Letters.

[47]  C. Shan,et al.  Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure , 2019, Journal of Materials Science.

[48]  Zhenhua Ni,et al.  Thermal transport and energy dissipation in two-dimensional Bi2O2Se , 2019, Applied Physics Letters.

[49]  Xiaolong Liu,et al.  Thickness-modulated in-plane Bi 2 O 2 Se homojunctions for ultrafast high-performance photodetectors , 2019, Chinese Physics B.

[50]  Lain‐Jong Li,et al.  Quasi-Two Dimensional Se-Terminated Bismuth Oxychalcogenide (Bi2O2Se). , 2019, ACS nano.

[51]  Xinran Wang,et al.  Sensitive and Ultrabroadband Phototransistor Based on Two‐Dimensional Bi2O2Se Nanosheets , 2019, Advanced Functional Materials.

[52]  Bin Zhu,et al.  Seed‐Induced Vertical Growth of 2D Bi2O2Se Nanoplates by Chemical Vapor Transport , 2019, Advanced Functional Materials.

[53]  X. Zu,et al.  One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors , 2019, Chemical Engineering Journal.

[54]  Congwei Tan,et al.  Bolometric Effect in Bi2 O2 Se Photodetectors. , 2019, Small.

[55]  T. Zhai,et al.  PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 Micrometers. , 2019, ACS nano.

[56]  Jinxiong Wu,et al.  Molecular Beam Epitaxy and Electronic Structure of Atomically Thin Oxyselenide Films , 2019, Advanced materials.

[57]  J. Ghatak,et al.  Ultrathin Free-standing Nanosheets of Bi2O2Se: Room Temperature Ferroelectricity in Self-assembled Charged Layered Heterostructure. , 2019, Nano letters.

[58]  M. Jiang,et al.  Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition , 2019, Nanotechnology.

[59]  Qinghua Zhang,et al.  Synergistical Enhancement of Thermoelectric Properties in n‐Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure , 2019, Advanced Energy Materials.

[60]  Zuxing Zhang,et al.  Layered Semiconductor Bi2O2Se for Broadband Pulse Generation in the Near-Infrared , 2019, IEEE Photonics Technology Letters.

[61]  Chunhua Lu,et al.  Significant Optimization of Electron-Phonon Transport of n-Type Bi2O2Se by Mechanical Manipulation of Se Vacancies via Shear Exfoliation. , 2019, ACS applied materials & interfaces.

[62]  Pu Huang,et al.  Enhanced Photodetection Properties of Tellurium@Selenium Roll-to-Roll Nanotube Heterojunctions. , 2019, Small.

[63]  Yushuang Cui,et al.  Electron-electron scattering dominated electrical and magnetotransport properties in the quasi-two-dimensional Fermi liquid single-crystal Bi2O2Se , 2019, Physical Review B.

[64]  X. Zu,et al.  α-CsPbI3 Colloidal Quantum Dots: Synthesis, Photodynamics, and Photovoltaic Applications , 2019, ACS Energy Letters.

[65]  Zhenxing Wang,et al.  Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors , 2019, Applied Physics Letters.

[66]  Jinxiong Wu,et al.  Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin-orbit interaction. , 2019, Nanoscale.

[67]  Jing Lu,et al.  Pervasive Ohmic Contacts in Bilayer Bi2O2Se–Metal Interfaces , 2019, The Journal of Physical Chemistry C.

[68]  Jinxiong Wu,et al.  Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. , 2019, Nano letters.

[69]  Zhiyong Zhang,et al.  Unusual Fermi‐Level Pinning and Ohmic Contact at Monolayer Bi2O2Se–Metal Interface , 2019, Advanced Theory and Simulations.

[70]  Yuting Luo,et al.  Controlled Vapor–Solid Deposition of Millimeter‐Size Single Crystal 2D Bi2O2Se for High‐Performance Phototransistors , 2019, Advanced Functional Materials.

[71]  Zhiyong Zhang,et al.  Sub 10 nm Bilayer Bi2O2Se Transistors , 2019, Advanced Electronic Materials.

[72]  Jinxiong Wu,et al.  Low Residual Carrier Concentration and High Mobility in 2D Semiconducting Bi2O2Se. , 2019, Nano letters.

[73]  Jinxiong Wu,et al.  High-performance sub-10 nm monolayer Bi2O2Se transistors. , 2019, Nanoscale.

[74]  Jongbaeg Kim,et al.  A Fully Transparent, Flexible, Sensitive, and Visible‐Blind Ultraviolet Sensor Based on Carbon Nanotube–Graphene Hybrid , 2018, Advanced Electronic Materials.

[75]  S. Pennycook,et al.  Ultrasensitive 2D Bi2O2Se Phototransistors on Silicon Substrates , 2018, Advanced materials.

[76]  Luping Shi,et al.  Truly Concomitant and Independently Expressed Short‐ and Long‐Term Plasticity in a Bi2O2Se‐Based Three‐Terminal Memristor , 2018, Advanced materials.

[77]  Jiang-Tao Liu,et al.  Electronic and mechanical property of high electron mobility semiconductor Bi2O2Se , 2018, Journal of Alloys and Compounds.

[78]  Yuanhua Lin,et al.  Boosting the thermoelectric performance of Bi2O2Se by isovalent doping , 2018 .

[79]  Peng Wang,et al.  Progress, Challenges, and Opportunities for 2D Material Based Photodetectors , 2018, Advanced Functional Materials.

[80]  C. Lim,et al.  Probing the Physical Origin of Anisotropic Thermal Transport in Black Phosphorus Nanoribbons , 2018, Advanced materials.

[81]  Jinxiong Wu,et al.  Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se , 2018, Science Advances.

[82]  Rong Zhang,et al.  Ultrahigh Hall mobility and suppressed backward scattering in layered semiconductor Bi2O2Se , 2018, Applied Physics Letters.

[83]  Rong Zhang,et al.  Observation of bimolecular recombination in high mobility semiconductor Bi2O2Se using ultrafast spectroscopy , 2018, Applied Physics Letters.

[84]  Yuanhua Lin,et al.  Carrier concentration optimization for thermoelectric performance enhancement in n-type Bi2O2Se , 2018, Journal of the European Ceramic Society.

[85]  Fengqiu Wang,et al.  An Ultrabroadband Mid‐Infrared Pulsed Optical Switch Employing Solution‐Processed Bismuth Oxyselenide , 2018, Advanced materials.

[86]  Giuseppe Iannaccone,et al.  Publisher Correction: Quantum engineering of transistors based on 2D materials heterostructures , 2018, Nature Nanotechnology.

[87]  Congwei Tan,et al.  Raman Spectra and Strain Effects in Bismuth Oxychalcogenides , 2018, The Journal of Physical Chemistry C.

[88]  L. Yin,et al.  High‐Performance Near‐Infrared Photodetector Based on Ultrathin Bi2O2Se Nanosheets , 2018 .

[89]  L. Beneš,et al.  Enhanced Thermoelectric Performance of n-type Bi2O2Se Ceramics Induced by Ge Doping , 2018, Journal of Electronic Materials.

[90]  Jinxiong Wu,et al.  Strong spin-orbit interaction and magnetotransport in semiconductor Bi2O2Se nanoplates. , 2018, Nanoscale.

[91]  Tianran Li,et al.  Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals , 2017, Nature Communications.

[92]  Guodong Liu,et al.  Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. , 2017, ACS nano.

[93]  Jinxiong Wu,et al.  Chemical Patterning of High‐Mobility Semiconducting 2D Bi2O2Se Crystals for Integrated Optoelectronic Devices , 2017, Advanced materials.

[94]  M. Blamire,et al.  Electronic Structure and Band Alignment at the NiO and SrTiO3 p-n Heterojunctions. , 2017, ACS applied materials & interfaces.

[95]  P. Chiu,et al.  High-Mobility InSe Transistors: The Role of Surface Oxides. , 2017, ACS nano.

[96]  H Zhao,et al.  Ultrafast Laser Spectroscopy of Two‐Dimensional Materials Beyond Graphene , 2017 .

[97]  L. Yin,et al.  Two‐Dimensional Non‐Layered Materials: Synthesis, Properties and Applications , 2017 .

[98]  Jinxiong Wu,et al.  Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals. , 2017, Nano letters.

[99]  Jinxiong Wu,et al.  High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. , 2017, Nature nanotechnology.

[100]  T. Kanno,et al.  Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2‐Based Layered Zintl Compounds with High Thermoelectric Performance , 2016, Advanced materials.

[101]  Miyoung Kim,et al.  Role of O and Se defects in the thermoelectric properties of bismuth oxide selenide , 2016 .

[102]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[103]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[104]  M. Liangruksa,et al.  Effects of negative response of electron transport to thermoelectric properties of Bi2O2Se , 2016 .

[105]  Yuanhua Lin,et al.  Optimization of the thermoelectric properties of Bi2O2Se ceramics by altering the temperature of spark plasma sintering , 2016, Journal of Electroceramics.

[106]  L. Evseeva,et al.  Synthesis and properties of NaxCoO2 (x = 0.55, 0.89) oxide thermoelectrics , 2016, Inorganic Materials.

[107]  Thomas N Jackson,et al.  Mobility overestimation due to gated contacts in organic field-effect transistors , 2016, Nature Communications.

[108]  D. Mihailovic,et al.  Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach , 2016, 1601.07204.

[109]  F. Miao,et al.  High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection , 2015, 1512.06515.

[110]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[111]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[112]  Chongwu Zhou,et al.  Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. , 2015, ACS nano.

[113]  Yuanhua Lin,et al.  Enhanced Thermoelectric Properties of Bi2O2Se Ceramics by Bi Deficiencies , 2015 .

[114]  Yuanhua Lin,et al.  Enhanced Thermoelectric Performance of Bi2O2Se with Ag Addition , 2015, Materials.

[115]  Peide D. Ye,et al.  Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus , 2015, Nature Communications.

[116]  P. Vaqueiro,et al.  Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te , 2015 .

[117]  Yuanhua Lin,et al.  High-temperature thermoelectric behaviors of Sn-doped n-type Bi2O2Se ceramics , 2015, Journal of Electroceramics.

[118]  G. Janssen,et al.  Optical transmittance of multilayer graphene , 2014, 1409.4664.

[119]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[120]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[121]  W. Li,et al.  Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction. , 2014, ACS applied materials & interfaces.

[122]  D. Schlom,et al.  Atomic-scale control of competing electronic phases in ultrathin LaNiO₃. , 2014, Nature nanotechnology.

[123]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[124]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[125]  V. Shutthanandan,et al.  Cation intermixing and electronic deviations at the insulating LaCrO3/SrTiO3(001) interface , 2013 .

[126]  Chenguo Hu,et al.  Strain Effects To Optimize Thermoelectric Properties of Doped Bi2O2Se via Tran–Blaha Modified Becke–Johnson Density Functional Theory , 2013 .

[127]  Kaiyou Zhang,et al.  Synthesis and thermoelectric properties of Bi{sub 2}O{sub 2}Se nanosheets , 2013 .

[128]  A. Radenović,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[129]  R. Colby,et al.  The Impacts of Cation Stoichiometry and Substrate Surface Quality on Nucleation, Structure, Defect Formation, and Intermixing in Complex Oxide Heteroepitaxy–LaCrO3 on SrTiO3(001) , 2013 .

[130]  W. J. Weber,et al.  The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides , 2013 .

[131]  Jong-Hyun Ahn,et al.  GRAPHENE-BASED TRANSPARENT CONDUCTIVE FILMS , 2013 .

[132]  Chaohe Xu,et al.  Graphene-based electrodes for electrochemical energy storage , 2013 .

[133]  Hua Zhang,et al.  Graphene-based electrochemical sensors. , 2013, Small.

[134]  S. Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013, 1302.5865.

[135]  T. Varga,et al.  Multiband optical absorption controlled by lattice strain in thin-film LaCrO3. , 2013, Physical review letters.

[136]  Miyoung Kim,et al.  Temperature and carrier-concentration dependences of the thermoelectric properties of bismuth selenide dioxide compounds , 2012 .

[137]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[138]  G. Shi,et al.  Graphene based catalysts , 2012 .

[139]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[140]  L. Beneš,et al.  Preparation and Transport Properties of Bi2O2Se Single Crystals , 2012, Journal of Electronic Materials.

[141]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[142]  Peng Chen,et al.  Biological and chemical sensors based on graphene materials. , 2012, Chemical Society reviews.

[143]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[144]  J. Brivio,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[145]  B. Arey,et al.  Band alignment, built-in potential, and the absence of conductivity at the LaCrO3/SrTiO3(001) heterojunction. , 2011, Physical review letters.

[146]  V. Shutthanandan,et al.  LaCrO(3) heteroepitaxy on SrTiO(3)(001) by molecular beam epitaxy , 2011, 1105.4290.

[147]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[148]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[149]  L. Qiao,et al.  Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films , 2011 .

[150]  M. Gabay,et al.  Metal-insulator transition in ultrathin LaNiO3 films. , 2011, Physical review letters.

[151]  Phaedon Avouris,et al.  Graphene: electronic and photonic properties and devices. , 2010, Nano letters.

[152]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[153]  J. Basu,et al.  The evolution of graphene-based electronic devices , 2010 .

[154]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[155]  C. Uher,et al.  Thermoelectric properties of Bi2O2Se , 2010 .

[156]  S. Chambers Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide Films , 2010, Advanced materials.

[157]  F. Xia,et al.  Ultrafast graphene photodetector. , 2009, Nature nanotechnology.

[158]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[159]  Y. Chang,et al.  Fundamental thickness limit of itinerant ferromagnetic SrRuO(3) thin films. , 2009, Physical review letters.

[160]  R. Service,et al.  Is Silicon's Reign Nearing Its End? , 2009, Science.

[161]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[162]  H. Christen,et al.  Recent advances in pulsed-laser deposition of complex oxides , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[163]  L. Qiao,et al.  Dielectric response and structure of in-plane tensile strained BaTiO3 thin films grown on the LaNiO3 buffered Si substrate , 2008 .

[164]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[165]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[166]  S. K. Sundaram,et al.  Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses , 2002, Nature materials.

[167]  H. Oppermann,et al.  II. Zum System Bi2O3/Bi2Se3/Bi2Te3 – die Kristallstruktur von Bi2O2(TexSe1–x) , 2000 .

[168]  H. Oppermann,et al.  UNTERSUCHUNG DER PHASENBEZIEHUNGEN IN QUATERNAREN SYSTEMEN BI2O3/BI2CH'3/BI2CH 3, (CH = S, SE, TE) , 1999 .

[169]  H. Oppermann,et al.  Thermochemische Untersuchungen am System Bi/Se/O III. Zum quasibinären System Bi2O3 –Bi2Se3 und zum ternären Bereich Bi2O3– Bi2O2Se – Se – SeO2/Thermochemical Investigations on the System Bi/Se/O III.The Quasy Binary System Bi2O3-Bi2Se3and the Ternary Range Bi2O3-Bi2O2Se–Se–SeO2 , 1999 .

[170]  H. Oppermann,et al.  Thermochemische Untersuchungen zum System Bi/Se/O. I. Das Phasendreieck Bi2Se3/Bi2O2Se/Se , 1996 .

[171]  H. Göbel,et al.  Zustandsbarogramme — Zustandsdiagramme durch Gesamtdruckmessungen , 1996 .

[172]  T. Venkatesan,et al.  Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material , 1987 .

[173]  H. Boller Die Kristallstruktur von Bi2O2Se , 1973 .

[174]  J. Davey,et al.  Epitaxial GaAs Films Deposited by Vacuum Evaporation , 1968 .

[175]  X. Zu,et al.  Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis , 2020 .

[176]  李天然,et al.  Bi2O2Se纳米带的气-液-固生长与高性能晶体管的构筑 , 2020 .

[177]  K. Sun,et al.  Tuning catalytic performance by controlling reconstruction process in operando condition , 2020 .

[178]  Yuanhua Lin,et al.  Synergistically optimizing electrical and thermal transport properties of Bi2O2Se ceramics by Te‐substitution , 2018 .

[179]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[180]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .