Chapter Green Nanotechnology: Development of Nanomaterials for Environmental and Energy Applications

E-mail:dionysios.d.dionysiou@uc.eduThis book chapter discusses the syntheses of variousnanomaterials,forgreennanotechnologyapplicationsindetail.Specialattentionisgiventothedevelopmentofemergingareas,suchasenvironmentalaswellasenergymaterials. Variousapproachesforpreparingnanostructuredphotocatalysts, suchastitaniumdioxide,zincoxide,ironoxide,andmetalsulfides,differentconventionalmethodsandnovelmethods,including©2013AmericanChemicalSociety

[1]  G. Buxton,et al.  Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution , 1988 .

[2]  Miguel Pelaez,et al.  Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. , 2007, Environmental science & technology.

[3]  Andreas Stein,et al.  Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: Synthesis and structural characterization , 1997 .

[4]  T. Clasen,et al.  Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. , 2006, International journal of hygiene and environmental health.

[5]  Wonyong Choi,et al.  Pure and modified TiO2 photocatalysts and their environmental applications , 2006 .

[6]  John A. Byrne,et al.  The photocatalytic removal of bacterial pollutants from drinking water , 2002 .

[7]  A. Emeline,et al.  Semiconductor Photocatalysis - Past, Present, and Future Outlook. , 2012, The journal of physical chemistry letters.

[8]  Fan Yang,et al.  Zn-Doped CdS Nanoarchitectures Prepared by Hydrothermal Synthesis: Mechanism for Enhanced Photocatalytic Activity and Stability under Visible Light , 2012 .

[9]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[10]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[11]  Abraham Ulman,et al.  Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles , 2001 .

[12]  Guozhong Cao,et al.  Polydisperse Aggregates of ZnO Nanocrystallites: A Method for Energy‐Conversion‐Efficiency Enhancement in Dye‐Sensitized Solar Cells , 2008 .

[13]  Efstathios Z Panagou,et al.  Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. , 2011, Food microbiology.

[14]  M. Wainwright,et al.  Methylene blue derivatives--suitable photoantimicrobials for blood product disinfection? , 2000, International journal of antimicrobial agents.

[15]  Dionysios D. Dionysiou,et al.  Advanced oxidation processes for water treatment , 2012 .

[16]  G. Romanos,et al.  Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. , 2012, Journal of hazardous materials.

[17]  Xierong Zeng,et al.  Mechanochemical synthesis of zinc oxide nanocrystalline , 2006 .

[18]  Olof Ramström,et al.  Molecular imprinting technology: challenges and prospects for the future , 1998 .

[19]  Dionysios D. Dionysiou,et al.  Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films , 2012 .

[20]  Wenjuan Li,et al.  Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2 , 2012 .

[21]  Wilson F. Jardim,et al.  Photocatalytic degradation of aromatic chlorinated compounds using TiO2: Toxicity of intermediates , 1997 .

[22]  Bernard Delmon,et al.  Preparation of Highly Dispersed Mixed Oxides and Oxide Solid Solutions by Pyrolysis of Amorphous Organic Precursors , 1970 .

[23]  Polycarpos Falaras,et al.  Enhanced Open‐Circuit Photopotential in Quasi‐Solid‐State Dye‐Sensitized Solar Cells Based on Polymer Redox Electrolytes Filled with Anodic Titania Nanotubes , 2011 .

[24]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[25]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[26]  Fernando Colmenares,et al.  Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview , 2009, Materials.

[27]  Federico Capasso,et al.  Broadband ZnO single-nanowire light-emitting diode. , 2006, Nano letters.

[28]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[29]  J. Hoigne,et al.  Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters. , 1986, Environmental science & technology.

[30]  W. J. Cooper,et al.  Mechanistic considerations for the degradation of methyl tert-butyl ether (MTBE) by sonolysis: effect of argon vs. oxygen saturated solutions. , 2012, Ultrasonics sonochemistry.

[31]  Cesar Pulgarin,et al.  Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. , 2010 .

[32]  H. Haick,et al.  Selective photocatalysis by means of molecular recognition. , 2001, Journal of the American Chemical Society.

[33]  Jorge Laine,et al.  Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon , 1998 .

[34]  E. Favvas,et al.  Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. , 2012, Water research.

[35]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[36]  Mark A. Barteau,et al.  Using atomic force microscopy (AFM) to study the surface structure of oxide and metal-decorated oxide particles , 2000 .

[37]  Noboru Suzuki,et al.  Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles , 2008 .

[38]  G. C. Allen,et al.  Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. , 2002, Environmental pollution.

[39]  Mei Li,et al.  Microwave-assisted rapid synthesis of anatase TiO2 nanocrystals with exposed {001} facets , 2012 .

[40]  Yaron Paz,et al.  Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide , 2010 .

[41]  Polycarpos Falaras,et al.  Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes , 2012 .

[42]  G. Zeng,et al.  Use of iron oxide nanomaterials in wastewater treatment: a review. , 2012, The Science of the total environment.

[43]  Yasuhiro Shiraishi,et al.  Ti-containing mesoporous organosilica as a photocatalyst for selective olefin epoxidation. , 2006, The journal of physical chemistry. B.

[44]  Jianhui Sun,et al.  Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. , 2008, Journal of hazardous materials.

[45]  K. Choy Chemical vapour deposition of coatings , 2003 .

[46]  Hideki Kato,et al.  Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. , 2004, Journal of the American Chemical Society.

[47]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[48]  T. Nakajima,et al.  Photoelectrochemical sterilization of microbial cells by semiconductor powders , 1985 .

[49]  Somayeh Khanjani,et al.  In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation. , 2013, Ultrasonics sonochemistry.

[50]  Hajime Haneda,et al.  Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization , 2005 .

[51]  Dionysios D. Dionysiou,et al.  Inorganic-organic core-shell titania nanoparticles for efficient visible light activated photocatalysis , 2013 .

[52]  Georg Maret,et al.  Synthesis and Characterization of Porous and Nonporous Monodisperse Colloidal TiO2 Particles. , 2004 .

[53]  Virender K. Sharma,et al.  Sustainable Nanotechnology and the Environment: Advances and Achievements , 2013 .

[54]  V. M. Mboula,et al.  Assessment of the efficiency of photocatalysis on tetracycline biodegradation. , 2012, Journal of hazardous materials.

[55]  Suresh C. Pillai,et al.  Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor , 2001 .

[56]  N. Intasanta,et al.  The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties , 2011 .

[57]  D. Fabbri,et al.  Removal of alkylphenols from polluted sites using surfactant-assisted soil washing and photocatalysis , 2011, Environmental science and pollution research international.

[58]  Lei Ge,et al.  Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots , 2012 .

[59]  Teng Zhai,et al.  Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity , 2012 .

[60]  P. Falaras,et al.  Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells , 2011 .

[61]  A. Fujishima,et al.  Quantum yields of active oxidative species formed on TiO2 photocatalyst , 2000 .

[62]  M. Mazúr,et al.  Investigations of metal-doped titanium dioxide photocatalysts , 2002 .

[63]  Naoki Shimura,et al.  Controlled Photocatalytic Ability of Titanium Dioxide Particle by Coating with Nanoporous Silica , 2008 .

[64]  V. A. Kuznetzov,et al.  Crystallisation of titanium, zirconium and hafnium oxides and some titanate and zirconate compounds under hydrothermal conditions , 1968 .

[65]  Rajender S. Varma,et al.  Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol−Gel Methods Modified with Ionic Liquid and Surfactant Molecules , 2006 .

[66]  Wonyong Choi,et al.  Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. , 2004, Water research.

[67]  J. Anthony Byrne,et al.  Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes , 2008 .

[68]  Yaron Paz,et al.  Composite Titanium Dioxide Photocatalysts and the "Adsorb & Shuttle" Approach: A Review , 2010 .

[69]  J A Byrne,et al.  Photocatalytic inactivation of Cryptosporidium parvum on nanostructured titanium dioxide films. , 2010, Journal of water and health.

[70]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[71]  Jun-Jie Zhu,et al.  Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures , 2006, Nanotechnology.

[72]  S. B. Radding,et al.  Spray Pyrolysis Processing , 1982 .

[73]  Feng Huang,et al.  Evolution of ZnS Nanostructure Morphology under Interfacial Free-Energy Control , 2008 .

[74]  Dionysios D. Dionysiou,et al.  Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR , 2010 .

[75]  Eric Hu,et al.  Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst , 2006 .

[76]  Sridhar Komarneni,et al.  Microwave-hydrothermal processing of titanium dioxide , 1999 .

[77]  Dimiter S. Dimitrov Interactions of antibody-conjugated nanoparticles with biological surfaces , 2006 .

[78]  Julián Blanco,et al.  Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends , 2009 .

[79]  Shou-Qing Liu,et al.  Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants , 2012, Environmental Chemistry Letters.

[80]  Paul Péringer,et al.  Interaction between E. coli inactivation and DBP-precursors — dihydroxybenzene isomers — in the photocatalytic process of drinking-water disinfection with TiO2 , 2001 .

[81]  Frédéric Taran,et al.  The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography , 2005 .

[82]  Paramita Saha Chowdhury,et al.  Green Synthesis of Nanoscopic Iron Oxide Particles: A Potential Oxidizer in Nanoenergetics , 2007 .

[83]  Christopher J Cramer,et al.  Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. , 2009, Chemical reviews.

[84]  Yoshinori Murakami,et al.  Singlet oxygen formation in photocatalytic TiO2 aqueous suspension , 2004 .

[85]  Tsuyoshi Takata,et al.  Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light , 2008 .

[86]  Hossam Haick,et al.  Controlled mass transport as a means for obtaining selective photocatalysis , 2003 .

[87]  Dionysios D. Dionysiou,et al.  CLEAN WATER: water detoxification using innovative photocatalysts , 2010 .

[88]  Yao-Hsuan Tseng,et al.  The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites , 2008, Nanotechnology.

[89]  Yasuhiro Shiraishi,et al.  Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. , 2005, Journal of the American Chemical Society.

[90]  Kayano Sunada,et al.  Studies on photokilling of bacteria on TiO2 thin film , 2003 .

[91]  Wilson F. Jardim,et al.  Remediation of pesticide contaminated soil using TiO2 mediated by solar light , 2002 .

[92]  M. Rahman,et al.  Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. , 2009, Talanta.

[93]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[94]  Peter F. James,et al.  Silica and silica-titania glasses prepared by the sol-gel process , 1982 .

[95]  J. Anthony Byrne,et al.  Immobilisation of TiO2 powder for the treatment of polluted water , 1998 .

[96]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[97]  Jin-Song Hu,et al.  Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. , 2005, Angewandte Chemie.

[98]  Zhiming Lin,et al.  Sonochemical synthesis of nanocrystalline TiO 2 by hydrolysis of titanium alkoxides , 2003 .

[99]  Joaquim L. Faria,et al.  Degradation of diphenhydramine pharmaceutical in aqueous solutions by using two highly active TiO2 photocatalysts: Operating parameters and photocatalytic mechanism , 2012 .

[100]  Zhi Yang,et al.  Rapid large-scale preparation of ZnO nanowires for photocatalytic application , 2011, Nanoscale research letters.

[101]  Lixia Yang,et al.  An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array. , 2008, Bioelectrochemistry.

[102]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[103]  John A. Byrne,et al.  Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors , 2012 .

[104]  Craig A. Grimes,et al.  Direct synthesis of ZnO nanoparticles by a solution-free mechanochemical reaction , 2006 .

[105]  Rafael Luque,et al.  Facile preparation of controllable size monodisperse anatase titania nanoparticles. , 2012, Chemical communications.

[106]  J. Byrne,et al.  Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. , 2009, Water research.

[107]  Dana R. Kester,et al.  Hydrogen peroxide measurement in seawater by (p-hydroxyphenyl)acetic acid dimerization , 1988 .

[108]  Yaron Paz,et al.  Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products' desorption. , 2012, Physical chemistry chemical physics : PCCP.

[109]  Yaron Paz,et al.  Preferential photodegradation – why and how? , 2006 .

[110]  Yoshitake Masuda,et al.  Formation and photocatalytic application of ZnO nanotubes using aqueous solution. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[111]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[112]  Edward J. Wolfrum,et al.  Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells , 1999 .

[113]  Ray L. Frost,et al.  Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids , 2002 .

[114]  Polycarpos Falaras,et al.  Nanotechnologies for the treatment of water, air and soil. , 2012, Journal of hazardous materials.

[115]  Pierre Pichat,et al.  Some views about indoor air photocatalytic treatment using TiO2: Conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants , 2010 .

[116]  Cesar Pulgarin,et al.  Field solar E-coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? , 2004 .

[117]  A. Mirhabibi,et al.  ZnO Nanoparticles Synthesised by mechanochemical processing , 2006 .

[118]  Nigel Leyland,et al.  Rapid microwave synthesis of mesoporous TiO2 for electrochromic displays , 2010 .

[119]  Fritz H Frimmel,et al.  Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. , 2005, Water research.

[120]  Elias K. Stefanakos,et al.  A review of the mechanisms and modeling of photocatalytic disinfection , 2010 .

[121]  W. J. Cooper,et al.  Radiolysis studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. , 2009, Environmental science & technology.

[122]  Aniruddha B. Pandit,et al.  One pot green synthesis of nano sized zinc oxide by sonochemical method , 2012 .

[123]  Shoji Yamanaka,et al.  Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: a combination of molecular selective adsorption and photocatalysis , 2004 .

[124]  I. E. Grey,et al.  TiO2 Photoelectrodes for Water Splitting: Carbon Doping by Flame Pyrolysis? , 2008 .

[125]  Martin A. Green,et al.  Solar cell efficiency tables (Version 38) , 2011 .

[126]  Jun-Jie Zhu,et al.  The synthesis of PbF2 nanorods in a microemulsion system , 2007 .

[127]  A. Kröner,et al.  The origin of the southern Namaqualand gneiss complex, South Africa, in the light of geochemical data , 1971 .

[128]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[129]  Armand Masion,et al.  Structural degradation at the surface of a TiO(2)-based nanomaterial used in cosmetics. , 2010, Environmental science & technology.

[130]  Suresh Mathew,et al.  Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation , 2008, Nanoscale research letters.

[131]  Dong Liu,et al.  Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior , 2012 .

[132]  Anders Lindh,et al.  A hydrothermal investigation of the system FeO, Fe2O3, TiO2 , 1972 .

[133]  Tatsuya Kodama,et al.  Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays , 2002 .

[134]  Xuemei Zhou,et al.  Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles† , 2010 .

[135]  D. Dionysiou,et al.  Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2. , 2012, Journal of hazardous materials.

[136]  L. Hench,et al.  The sol-gel process , 1990 .

[137]  Eric McAdams,et al.  Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films , 2004 .

[138]  N. Ioannidis,et al.  Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles , 2012, Nanotechnology.

[139]  K. Thomas,et al.  Water disinfection for developing countries and potential for solar thermal pasteurization , 1998 .

[140]  Yu-Cheng Chang,et al.  Synthesis and Photocatalytic Activity of Small-Diameter ZnO Nanorods , 2009 .

[141]  Nicholas J. Turro,et al.  A New Method To Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions , 1997 .

[142]  Shicheng Zhang,et al.  Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO2-assisted photodegradation of 4-chlorophenol. , 2006, The journal of physical chemistry. B.

[143]  S. C. Pillai,et al.  Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors , 2001 .

[144]  Peter K. J. Robertson,et al.  The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review , 2007 .

[145]  Yan Wu,et al.  Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. , 2011, Environmental science & technology.

[146]  Martha C. Daza,et al.  Visible light superoxide radical anion generation by tetra(4-carboxyphenyl)porphyrin/TiO2: EPR characterization , 2010 .

[147]  S. Feng,et al.  New materials in hydrothermal synthesis. , 2001, Accounts of chemical research.

[148]  Fu-Pei Liang,et al.  Sonochemical synthesis and resonance light scattering effect of Zn(II)bis(1-(2-pyridylazo)-2-naphthol) nanorods , 2007 .

[149]  Christof M Niemeyer,et al.  On the generation of free radical species from quantum dots. , 2005, Small.

[150]  Edward J. Wolfrum,et al.  Bactericidal mode of titanium dioxide photocatalysis , 2000 .

[151]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[152]  Jimmy C. Yu Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania , 2003 .

[153]  Junichi Nishino,et al.  Primary Passages for Various TiO2 Photocatalysts Studied by Means of Luminol Chemiluminescent Probe , 1999 .

[154]  Rui A R Boaventura,et al.  Solar photocatalysis of a recalcitrant coloured effluent from a wastewater treatment plant. , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[155]  E. Kasahara,et al.  Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. , 1999, Free radical biology & medicine.

[156]  Hiroshi Yoneyama,et al.  Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay , 1989 .

[157]  José L. Figueiredo,et al.  Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye , 2012 .

[158]  Jun-Jie Zhu,et al.  Preparation of CuO nanoparticles by microwave irradiation , 2002 .

[159]  Lang Xu,et al.  Sonochemical synthesis and photocatalysis of porous Cu2O nanospheres with controllable structures , 2009, Nanotechnology.

[160]  A. Xu,et al.  The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles , 2002 .

[161]  J. Horsky,et al.  Photocatalytic Effect of TiO2 Films on Viruses and Bacteria , 2007 .

[162]  Jun-Jie Zhu,et al.  A microwave assisted heating method for the preparation of copper sulfide nanorods , 2003 .

[163]  K. J. Sladek,et al.  Titanium Dioxide Coatings. Room Temperature Deposition , 1972 .

[164]  Polycarpos Falaras,et al.  Superhydrophilicity and photocatalytic property of nanocrystalline titania sol–gel films , 2007 .

[165]  Polycarpos Falaras,et al.  Solvent Effects at the Photoelectrode/Electrolyte Interface of a DSC: A Combined Spectroscopic and Photoelectrochemical Study , 2011 .

[166]  R. W. Matthews,et al.  Photo-oxidation of organic material in aqueous suspensions of titanium dioxide , 1986 .

[167]  Tsung-Shune Chin,et al.  Effect of redox state of copper on the properties of P2O5–Na2O–CuO glasses , 1999 .