Space, time, and episodic memory: The hippocampus is all over the cognitive map

In recent years, the field has reached an impasse between models suggesting that the hippocampus is fundamentally involved in spatial processing and models suggesting that the hippocampus automatically encodes all dimensions of experience in the service of memory. Here, we consider key conceptual issues that have impeded progress in our understanding of hippocampal function, and we review findings that establish the scope and limits of hippocampal involvement in navigation and memory. We argue that space and time serve as a primary scaffold to break up experiences into specific contexts, and to organize multimodal input that is to be associated within a context. However, the hippocampus is clearly capable of incorporating additional dimensions into the scaffold if they are determined to be relevant in the event‐defined context. Conceiving of the hippocampal representation as constrained by immediate task demands—yet preferring axes that involve space and time—helps to reconcile an otherwise disparate set of findings on the core function of the hippocampus.

[1]  John M. Pearce,et al.  Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors , 1998, Nature.

[2]  Y. Naya,et al.  Integrating What and When Across the Primate Medial Temporal Lobe , 2011, Science.

[3]  E. Maguire,et al.  The Human Hippocampus and Spatial and Episodic Memory , 2002, Neuron.

[4]  H. Eichenbaum,et al.  Hippocampal “Time Cells” Bridge the Gap in Memory for Discontiguous Events , 2011, Neuron.

[5]  B. McNaughton,et al.  Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions , 1998, The Journal of Neuroscience.

[6]  D. Hassabis,et al.  Using Imagination to Understand the Neural Basis of Episodic Memory , 2007, The Journal of Neuroscience.

[7]  C B Cave,et al.  The hippocampus, memory, and space , 1991, Hippocampus.

[8]  J. Barrash A historical review of topographical disorientation and its neuroanatomical correlates. , 1998, Journal of clinical and experimental neuropsychology.

[9]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[10]  Arne D. Ekstrom,et al.  A Tale of Two Temporal Coding Strategies: Common and Dissociable Brain Regions Involved in Recency versus Associative Temporal Order Retrieval Strategies , 2017, Journal of Cognitive Neuroscience.

[11]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[12]  G. Winocur,et al.  The hippocampus is involved in mental navigation for a recently learned, but not a highly familiar environment: A longitudinal fMRI study , 2012, Hippocampus.

[13]  S. Romani,et al.  Theta sequences are essential for internally generated hippocampal firing fields , 2014, Nature Neuroscience.

[14]  Maureen Ritchey,et al.  Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. , 2015, Progress in brain research.

[15]  Howard Eichenbaum,et al.  Bidirectional prefrontal-hippocampal interactions support context-guided memory , 2016, Nature Neuroscience.

[16]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[17]  Aiden E. G. F. Arnold,et al.  A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective , 2014, Front. Hum. Neurosci..

[18]  Eleanor A. Maguire,et al.  Scene construction in developmental amnesia: An fMRI study , 2014, Neuropsychologia.

[19]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[20]  E. Maguire,et al.  Navigation around London by a taxi driver with bilateral hippocampal lesions. , 2006, Brain : a journal of neurology.

[21]  N. Burgess,et al.  The hippocampus and memory: insights from spatial processing , 2008, Nature Reviews Neuroscience.

[22]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[23]  Gary H. Glover,et al.  High-resolution fMRI of Content-sensitive Subsequent Memory Responses in Human Medial Temporal Lobe , 2010, Journal of Cognitive Neuroscience.

[24]  Andy C. H. Lee,et al.  Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint , 2009, Hippocampus.

[25]  Pierre Lavenex,et al.  The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient , 2014, Front. Hum. Neurosci..

[26]  Arne D. Ekstrom,et al.  CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields , 2017, Nature Communications.

[27]  Jonathan W. Pillow,et al.  Discovering Event Structure in Continuous Narrative Perception and Memory , 2016, Neuron.

[28]  J. Gabrieli,et al.  Event-Related Activation in the Human Amygdala Associates with Later Memory for Individual Emotional Experience , 2000, The Journal of Neuroscience.

[29]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[30]  K M Gothard,et al.  Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Blake S. Porter,et al.  Hippocampal Representation of Related and Opposing Memories Develop within Distinct, Hierarchically Organized Neural Schemas , 2014, Neuron.

[33]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[34]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[35]  Demis Hassabis,et al.  Differential engagement of brain regions within a ‘core’ network during scene construction , 2010, Neuropsychologia.

[36]  Jeffrey M. Zacks,et al.  Human brain activity time-locked to perceptual event boundaries , 2001, Nature Neuroscience.

[37]  N. Cohen,et al.  Amnesia is a Deficit in Relational Memory , 2000, Psychological science.

[38]  Dagmar Zeithamova,et al.  Flexible Memories: Differential Roles for Medial Temporal Lobe and Prefrontal Cortex in Cross-Episode Binding , 2010, The Journal of Neuroscience.

[39]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[40]  Matthias J. Gruber,et al.  Hippocampal Activity Patterns Carry Information about Objects in Temporal Context , 2014, Neuron.

[41]  Christian F. Doeller,et al.  Establishing the Boundaries: The Hippocampal Contribution to Imagining Scenes , 2010, The Journal of Neuroscience.

[42]  Lila Davachi,et al.  Declarative Memory. , 2008, Current directions in psychological science.

[43]  Itamar Kahn,et al.  The Organization of Mouse and Human Cortico-Hippocampal Networks Estimated by Intrinsic Functional Connectivity , 2016, Cerebral cortex.

[44]  Yuji Naya,et al.  Context-dependent incremental timing cells in the primate hippocampus , 2014, Proceedings of the National Academy of Sciences.

[45]  E. Tulving,et al.  Episodic and semantic memory , 1972 .

[46]  M. Shapiro,et al.  A Map for Social Navigation in the Human Brain , 2015, Neuron.

[47]  M. Moser,et al.  A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation , 2015, Nature.

[48]  E. Maguire,et al.  Newcastle University Eprints , 2022 .

[49]  James R. Brockmole,et al.  Simultaneous spatial updating in nested environments , 2003, Psychonomic bulletin & review.

[50]  H. Eichenbaum Memory on time , 2013, Trends in Cognitive Sciences.

[51]  Andrew P. Yonelinas,et al.  Detecting Changes in Scenes: The Hippocampus Is Critical for Strength-Based Perception , 2013, Neuron.

[52]  N. Takahashi,et al.  Pure topographic disorientation due to right retrosplenial lesion , 1997, Neurology.

[53]  Charan Ranganath,et al.  The hippocampus generalizes across memories that share item and context information , 2016, bioRxiv.

[54]  Arne D. Ekstrom,et al.  Roles of human hippocampal subfields in retrieval of spatial and temporal context , 2015, Behavioural Brain Research.

[55]  C. Ranganath,et al.  Functional subregions of the human entorhinal cortex , 2015, eLife.

[56]  H. Eichenbaum Time cells in the hippocampus: a new dimension for mapping memories , 2014, Nature Reviews Neuroscience.

[57]  Arne D. Ekstrom,et al.  Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory , 2014, NeuroImage.

[58]  Krzysztof J. Gorgolewski,et al.  Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI , 2014, Front. Hum. Neurosci..

[59]  Arne D. Ekstrom,et al.  Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging , 2012, The Journal of Neuroscience.

[60]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[61]  Arne D. Ekstrom,et al.  Space, Time and Episodic Memory: the Hippocampus is all over the Cognitive Map , 2017, bioRxiv.

[62]  M. Shapiro,et al.  Dynamic Coding of Goal-Directed Paths by Orbital Prefrontal Cortex , 2011, The Journal of Neuroscience.

[63]  H. Eichenbaum The role of the hippocampus in navigation is memory. , 2017, Journal of neurophysiology.

[64]  J. O’Keefe,et al.  Single unit activity in the rat hippocampus during a spatial memory task , 2004, Experimental Brain Research.

[65]  Daniel R. Montello,et al.  Scale and Multiple Psychologies of Space , 1993, COSIT.

[66]  E. Maguire,et al.  Memory , Imagination , and Predicting the Future : A Common Brain Mechanism ? , 2013 .

[67]  R. Henson,et al.  How schema and novelty augment memory formation , 2012, Trends in Neurosciences.

[68]  Lila Davachi,et al.  Similarity Breeds Proximity: Pattern Similarity within and across Contexts Is Related to Later Mnemonic Judgments of Temporal Proximity , 2014, Neuron.

[69]  C. Stern,et al.  Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli , 2001, Hippocampus.

[70]  Jeffrey M. Zacks,et al.  Temporal changes as event boundaries: Processing and memory consequences of narrative time shifts , 2005 .

[71]  J. Duhamel,et al.  Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation , 2017, PLoS biology.

[72]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[73]  T Mimori,et al.  A case of polyarteritis nodosa who developed severe pneumonia. , 1998, The Keio journal of medicine.

[74]  Hanna Damasio,et al.  The neuroanatomical correlates of route learning impairment , 2000, Neuropsychologia.

[75]  B. Poucet Spatial cognitive maps in animals: new hypotheses on their structure and neural mechanisms. , 1993, Psychological review.

[76]  Jeffrey M. Zacks,et al.  Event Segmentation , 2007, Current directions in psychological science.

[77]  Howard Eichenbaum,et al.  Learning Causes Reorganization of Neuronal Firing Patterns to Represent Related Experiences within a Hippocampal Schema , 2013, The Journal of Neuroscience.

[78]  Mark P. Brandon,et al.  During Running in Place, Grid Cells Integrate Elapsed Time and Distance Run , 2015, Neuron.

[79]  Sarah Gensburger Memory and space , 2019 .

[80]  Arne D. Ekstrom,et al.  Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans , 2014, Scientific Reports.

[81]  Arne D. Ekstrom,et al.  Human neural systems underlying rigid and flexible forms of allocentric spatial representation , 2013, Human brain mapping.

[82]  Matthias J. Gruber,et al.  Theta phase synchronization between the human hippocampus and the prefrontal cortex supports learning of unexpected information , 2017, bioRxiv.

[83]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[84]  Ranxiao Frances Wang,et al.  Human navigation in nested environments. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[85]  Howard Eichenbaum,et al.  Distinct Pathways for Rule-Based Retrieval and Spatial Mapping of Memory Representations in Hippocampal Neurons , 2013, The Journal of Neuroscience.

[86]  Michael X. Cohen,et al.  Intracranial EEG Correlates of Expectancy and Memory Formation in the Human Hippocampus and Nucleus Accumbens , 2010, Neuron.

[87]  H. Eichenbaum,et al.  Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats , 2013, The Journal of Neuroscience.

[88]  E. Rolls,et al.  View‐responsive neurons in the primate hippocampal complex , 1995, Hippocampus.

[89]  Arne D. Ekstrom,et al.  The Spectro-Contextual Encoding and Retrieval Theory of Episodic Memory , 2014, Front. Hum. Neurosci..

[90]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[91]  Charan Ranganath,et al.  The hippocampus: a special place for time , 2016, Annals of the New York Academy of Sciences.

[92]  C. Ranganath A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory , 2010, Hippocampus.

[93]  Eleanor A. Maguire,et al.  Patient HC with developmental amnesia can construct future scenarios , 2011, Neuropsychologia.

[94]  Hilla Peretz,et al.  The , 1966 .

[95]  Eric A. Zilli,et al.  Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations , 2006, Neuron.

[96]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. , 1999, Cerebral cortex.

[97]  Charan Ranganath,et al.  Navigating the human hippocampus without a GPS , 2015, Hippocampus.

[98]  S. Becker,et al.  One spatial map or many? Spatial coding of connected environments. , 2014, Journal of experimental psychology. Learning, memory, and cognition.

[99]  Arne D. Ekstrom,et al.  Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study , 2016, Neuropsychologia.

[100]  Arne D. Ekstrom,et al.  Dissociable networks involved in spatial and temporal order source retrieval , 2011, NeuroImage.

[101]  David S. Touretzky,et al.  Context Learning in the Rodent Hippocampus , 2007, Neural Computation.

[102]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[103]  Arne D. Ekstrom,et al.  Dynamics of Hippocampal Ensemble Activity Realignment: Time versus Space , 2000, The Journal of Neuroscience.

[104]  H. Eichenbaum,et al.  Interplay of Hippocampus and Prefrontal Cortex in Memory , 2013, Current Biology.

[105]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[106]  Asohan Amarasingham,et al.  Hippocampus Internally Generated Cell Assembly Sequences in the Rat , 2011 .

[107]  Justin L. Vincent,et al.  Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. , 2008, Journal of neurophysiology.

[108]  R. Sutherland,et al.  The hippocampus is not necessary for a place response but may be necessary for pliancy. , 1999, Behavioral neuroscience.

[109]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[110]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.