Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited

Previous ultra-rapid go/no-go categorization studies with manual responses have demonstrated the remarkable speed and efficiency with which humans process natural scenes. Using a forced-choice saccade task we show here that when two scenes are simultaneously flashed in the left and right hemifields, human participants can reliably make saccades to the side containing an animal in as little as 120 ms. Low level differences between target and distractor images were unable to account for these exceptionally fast responses. The results suggest a very fast and unexpected route linking visual processing in the ventral stream with the programming of saccadic eye movements.

[1]  R. Dolan,et al.  A subcortical pathway to the right amygdala mediating "unseen" fear. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Andrea Baraldi,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[4]  Jean Bullier,et al.  Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. , 2002, Cerebral cortex.

[5]  N. Logothetis Object vision and visual awareness. , 1998, Current opinion in neurobiology.

[6]  R. Wurtz,et al.  Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. , 2001, Journal of neurophysiology.

[7]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[8]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[9]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[10]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[11]  M. Fabre-Thorpe,et al.  Fast visual processing and its implications , 2002 .

[12]  C. Busettini,et al.  Radial optic flow induces vergence eye movements with ultra-short latencies , 1997, Nature.

[13]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[14]  F. Hamker The reentry hypothesis: linking eye movements to visual perception. , 2003, Journal of vision.

[15]  Margitta Seeck,et al.  The speed of visual cognition. , 2004, Supplements to Clinical neurophysiology.

[16]  Derrick J. Parkhurst,et al.  Scene content selected by active vision. , 2003, Spatial vision.

[17]  Bruno A Olshausen,et al.  The earliest EEG signatures of object recognition in a cued-target task are postsensory. , 2005, Journal of vision.

[18]  James J DiCarlo,et al.  Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. , 2005, Journal of neurophysiology.

[19]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[20]  Robert M. McPeek,et al.  Concurrent processing of saccades in visual search , 2000, Vision Research.

[21]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[22]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[23]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[24]  Pascal Wurtz,et al.  Single‐pulse transcranial magnetic stimulation over the frontal eye field can facilitate and inhibit saccade triggering , 2004, The European journal of neuroscience.

[25]  Peter H. Schiller,et al.  Temporal factors in target selection with saccadic eye movements , 2003, Experimental Brain Research.

[26]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[27]  P. Schyns,et al.  A mechanism for impaired fear recognition after amygdala damage , 2005, Nature.

[28]  Chi-Hung Juan,et al.  Feedback to V1: a reverse hierarchy in vision , 2003, Experimental Brain Research.

[29]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[30]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[31]  J. Findlay,et al.  Express saccades: is there a separate population in humans? , 2004, Experimental Brain Research.

[32]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[33]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[34]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[35]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[36]  Bruno A Olshausen,et al.  Timecourse of neural signatures of object recognition. , 2003, Journal of vision.

[37]  J D Schall,et al.  Dynamic dissociation of visual selection from saccade programming in frontal eye field. , 2001, Journal of neurophysiology.

[38]  R. Klein,et al.  What are human express saccades? , 1993, Perception & psychophysics.

[39]  S. Thorpe,et al.  A Limit to the Speed of Processing in Ultra-Rapid Visual Categorization of Novel Natural Scenes , 2001, Journal of Cognitive Neuroscience.

[40]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[41]  Philip L. Smith,et al.  A comparison of sequential sampling models for two-choice reaction time. , 2004, Psychological review.

[42]  Michèle Fabre-Thorpe,et al.  Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes. , 2004, Brain research. Cognitive brain research.

[43]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[44]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[45]  N. Logothetis,et al.  The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex , 2004, PLoS biology.

[46]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[47]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Carpenter PII: S0042-6989(01)00007-4 , 2001 .

[49]  Otto D. Creutzfeldt Baumgartner, Gunter 1924-1991 , 1991 .

[50]  Michèle Fabre-Thorpe,et al.  Rapid categorization of natural scenes in monkeys: target predictability and processing speed , 2005, Neuroreport.

[51]  J. Pelz,et al.  Oculomotor behavior and perceptual strategies in complex tasks , 2001, Vision Research.

[52]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[53]  L. Jarrard What does the hippocampus really do? , 1995, Behavioural Brain Research.

[54]  Jeroen B. J. Smeets,et al.  Colour vision can contribute to fast corrections of arm movements , 2004, Experimental Brain Research.

[55]  A Lévy-Schoen,et al.  Sensory factors are insufficient to define the ocular saccade goal in complex visual fields. , 1989, Brain, behavior and evolution.

[56]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[57]  Leonardo Chelazzi,et al.  Neural mechanisms for stimulus selection in cortical areas of the macaque subserving object vision , 1995, Behavioural Brain Research.

[58]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[59]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[60]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[61]  J. Pernier,et al.  Early signs of visual categorization for biological and non‐biological stimuli in humans , 2000, Neuroreport.

[62]  P. Subramanian Active Vision: The Psychology of Looking and Seeing , 2006 .

[63]  S. Thorpe,et al.  The Time Course of Visual Processing: From Early Perception to Decision-Making , 2001, Journal of Cognitive Neuroscience.

[64]  D I Perrett,et al.  Organization and functions of cells responsive to faces in the temporal cortex. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[66]  E. Castet,et al.  Temporal dynamics of motion integration for the initiation of tracking eye movements at ultra-short latencies , 2000, Visual Neuroscience.

[67]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[68]  P. E. Hallett,et al.  The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms , 2004, Experimental Brain Research.

[69]  Robert M. McPeek,et al.  What neural pathways mediate express saccades? , 1993, Behavioral and Brain Sciences.

[70]  Vision Research , 1961, Nature.

[71]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[72]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[73]  Iain D Gilchrist,et al.  Visual sensitivity in search tasks depends on the response requirement. , 2003, Spatial vision.

[74]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[75]  M G Saslow,et al.  Latency for saccadic eye movement. , 1967, Journal of the Optical Society of America.

[76]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[78]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.