Eternally dominating large grids

Abstract In the m- Eternal Domination game, a team of guard tokens initially occupies a dominating set on a graph G . An attacker then picks a vertex without a guard on it and attacks it. The guards defend against the attack: one of them has to move to the attacked vertex, while each remaining one can choose to move to one of his neighboring vertices. The new guards' placement must again be dominating. This attack-defend procedure continues eternally. The guards win if they can eternally maintain a dominating set against any sequence of attacks, otherwise the attacker wins. The m- eternal domination number for a graph G is the minimum amount of guards such that they win against any attacker strategy in G (all guards move model). We study rectangular grids and provide the first known general upper bound on the m-eternal domination number for these graphs. Our novel strategy implements a square rotation principle and eternally dominates m × n grids by using approximately m n 5 guards, which is asymptotically optimal even for ordinary domination.

[1]  Petr A. Golovach,et al.  Parameterized algorithm for eternal vertex cover , 2010, Inf. Process. Lett..

[2]  N.,et al.  To Satisfy Impatient Web surfers is Hard , 2012 .

[3]  John L. Goldwasser,et al.  Tight bounds for eternal dominating sets in graphs , 2008, Discret. Math..

[4]  Christina M. Mynhardt,et al.  Protecting a Graph with Mobile Guards , 2014, 1407.5228.

[5]  William Klostermeyer,et al.  Graphs with equal eternal vertex cover and eternal domination numbers , 2011, Discret. Math..

[6]  Anthony Bonato,et al.  The Game of Cops and Robbers on Graphs , 2011 .

[7]  Stéphan Thomassé,et al.  The Domination Number of Grids , 2011, SIAM J. Discret. Math..

[8]  I. Stewart Defend the Roman Empire , 1999 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  William Klostermeyer,et al.  Edge protection in graphs , 2009, Australas. J Comb..

[11]  Margaret-Ellen Messinger Closing the Gap: Eternal Domination on 3 x n Grids , 2017, Contributions Discret. Math..

[12]  Michael A. Henning,et al.  Defending the Roman Empire--A new strategy , 2003, Discret. Math..

[13]  Margaret-Ellen Messinger,et al.  Eternal domination on 3 × n grid graphs , 2015, Australas. J Comb..

[14]  Jh van Vuuren,et al.  Infinite Order Domination in Graphs , 2003 .

[15]  Michael A. Henning,et al.  Trees with large m-eternal domination number , 2016, Discret. Appl. Math..

[16]  P. L. N. Varma,et al.  • DOMINATION NUMBERS OF GRID GRAPHS P15×Pn , 2012 .

[17]  William Klostermeyer,et al.  Vertex covers and eternal dominating sets , 2012, Discret. Appl. Math..

[18]  Dorian Mazauric,et al.  Connected surveillance game , 2015, Theor. Comput. Sci..

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  Charles S. Revelle,et al.  Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..

[21]  Serge Gaspers,et al.  A note on the eternal dominating set problem , 2018, Int. J. Game Theory.

[22]  Margaret-Ellen Messinger,et al.  An Eternal Domination Problem in Grids , 2017 .

[23]  Jh van Vuuren,et al.  Finite Order Domination in Graphs , 2003 .

[24]  Gary MacGillivray,et al.  Bounds for the $m$-Eternal Domination Number of a Graph , 2017, Contributions Discret. Math..