Genetic reconstitution of the high-affinity L-arabinose transport system

Expression plasmids containing various portions of araFGH operon sequences were assayed for their ability to facilitate the high-affinity L-arabinose transport process in a strain lacking the chromosomal copy of this operon. Accumulation studies demonstrated that the specific induction of all three operon coding sequences was necessary to restore high-affinity L-arabinose transport. Kinetic analysis of this genetically reconstituted transport system indicated that it functions with essentially wild-type parameters. Therefore, L-arabinose-binding protein-mediated transport appears to require only two inducible membrane-associated components (araG and araH) in addition to the binding protein (araF).

[1]  M. Hofnung Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. , 1974, Genetics.

[2]  C. Brown,et al.  A Second Transport System for l-Arabinose in Escherichia coli B/r Controlled by the araC Gene , 1972, Journal of bacteriology.

[3]  R. W. Hogg “In Vivo” Detection of l-Arabinose-Binding Protein, CRM-Negative Mutants , 1971, Journal of bacteriology.

[4]  R. W. Hogg,et al.  High-affinity arabinose transport mutants of Escherichia coli: isolation and gene location , 1981, Journal of bacteriology.

[5]  B. Horazdovsky,et al.  High-affinity L-arabinose transport operon. Gene product expression and mRNAs. , 1987, Journal of molecular biology.

[6]  R. W. Hogg L-Arabinose transport and the L-arabinose binding protein of Escherichia coli. , 1977, Journal of supramolecular structure.

[7]  E. Englesberg,et al.  The L-arabinose permease system in Escherichia coli B/r. , 1966, Biochimica et biophysica acta.

[8]  R. Schleif,et al.  An L-arabinose binding protein and arabinose permeation in Escherichia coli. , 1969, Journal of molecular biology.

[9]  S. Baldwin,et al.  Mammalian and bacterial sugar transport proteins are homologous , 1987, Nature.

[10]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[11]  P. Henderson,et al.  Identification of the AraE transport protein of Escherichia coli. , 1981, The Biochemical journal.

[12]  S. R. Kushner,et al.  Genetic recombination in Escherichia coli: the role of exonuclease I. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Miller,et al.  High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products. , 1987, Journal of molecular biology.

[14]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[15]  Giovanna Ferro‐Luzzi Ames,et al.  Structure and mechanism of bacterial periplasmic transport systems , 1988, Journal of bioenergetics and biomembranes.

[16]  B. Vogelstein,et al.  Preparative and analytical purification of DNA from agarose. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[18]  G. F. Ames Bacterial periplasmic transport systems: structure, mechanism, and evolution. , 1986, Annual review of biochemistry.

[19]  R. Schleif,et al.  L-arabinose transport systems in Escherichia coli K-12 , 1981, Journal of bacteriology.

[20]  M. Schwartz,et al.  Structure of the malB region in Escherichia coli K12 , 2004, Molecular and General Genetics MGG.

[21]  S. Linn,et al.  Purification and properties of the recBC DNase of Escherichia coli K-12. , 1972, The Journal of biological chemistry.

[22]  R. Koningsveld Preparative and analytical aspects of polymer fractionation , 1970 .