Computationally Efficient, Fully Coupled Multiscale Modeling of Materials Phenomena Using Calibrated Localization Linkages

Most modern physics-based multiscale materials modeling and simulation tools aim to take into account the important details of the material internal structure at multiple length scales. However, they are extremely computationally expensive. In recent years, a novel data science enabled framework has been formulated for effective scale-bridging that is central to practical multiscaling. A salient feature of this new approach is its ability to capture heterogeneity of fields of interest at different length scales. In this approach, the computations at the mesoscale are handled using a novel data science approach called materials knowledge systems (MKS). The MKS approach has enjoyed tremendous success in building highly accurate and computationally efficient metamodels for localization (i.e., mesoscale spatial distribution of a macroscale imposed field such as stress or strain rate) in simulating a number of different multiscale materials phenomena. MKS derives its accuracy from the fact that it is calibrated to results from previously established numerical models for the phenomena of interest, while its computational efficiency comes from the use of fast Fourier transforms. The current capabilities and the future outlook for the MKS framework are expounded in this paper.

[1]  Peter Cloetens,et al.  Imaging applications of synchrotron X-ray micro-tomography in biological morphology and biomaterial science. Pt. I. General aspects of the technique and its advantages in the analysis of arthropod structures. , 2007 .

[2]  Dennis M. Dimiduk,et al.  Gamma titanium aluminide alloys : an assessment within the competition of aerospace structural materials , 1999 .

[3]  Somnath Ghosh,et al.  Quantitative characterization and modeling of composite microstructures by voronoi cells , 1997 .

[4]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[5]  Daniel B. Miracle,et al.  Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions , 2004 .

[6]  U. Hornung Homogenization and porous media , 1996 .

[7]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[8]  David L. McDowell,et al.  A second gradient theoretical framework for hierarchical multiscale modeling of materials , 2010 .

[9]  D. Blavette,et al.  An atom probe for three-dimensional tomography , 1993, Nature.

[10]  David T. Fullwood,et al.  A new spectral framework for establishing localization relationships for elastic behavior of composites and their calibration to finite-element models , 2008 .

[11]  G. Milton The Theory of Composites , 2002 .

[12]  Brent L. Adams,et al.  Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure , 1996 .

[13]  B. L. Adams,et al.  CREEP MODELING OF TEXTURED ZIRCALOY UNDER BIAXIAL STRESSING , 1984 .

[14]  Brent L. Adams,et al.  Grain size and orientation distributions: Application to yielding of α-titanium , 2009 .

[15]  Michal Šejnoha,et al.  From random microstructures to representative volume elements , 2007 .

[16]  P. Cloetens,et al.  Imaging applications of synchrotron X‐ray phase‐contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre‐sized arthropod structure , 2007, Journal of microscopy.

[17]  Surya R. Kalidindi,et al.  Microstructure Evolution during Roller Hemming of AZ31B Magnesium Sheet , 2012, Metallurgical and Materials Transactions A.

[18]  Brent L. Adams,et al.  Analysis of Irradiation Growth and Multiaxial Deformation Behavior of Nuclear Fuel Cladding , 1979 .

[19]  Akhtar S. Khan,et al.  Continuum theory of plasticity , 1995 .

[20]  Dennis M. Dimiduk,et al.  Phase transformation behavior of gamma titanium aluminide alloys during supertransus heat treatment , 1998 .

[21]  Brent L. Adams,et al.  The mesostructure—properties linkage in polycrystals , 1998 .

[22]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[23]  B. Bacroix,et al.  Texture and dislocation structures observation in a dual-phase steel under strain-path changes at large deformation , 2005 .

[24]  J. A. Cherry,et al.  Distortion Analysis of Weakly Nonlinear Filters Using Volterra Series , 1994 .

[25]  A. Cherkaev Variational Methods for Structural Optimization , 2000 .

[26]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[27]  Dennis M. Dimiduk,et al.  Development of intermetallic materials for aerospace systems , 1992 .

[28]  D. Yin,et al.  On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy , 2009 .

[29]  Mohammed Cherkaoui,et al.  Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels , 2000 .

[30]  Hiroshi Kadowaki,et al.  Bridging multi-scale method for localization problems , 2004 .

[31]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[32]  Surya R. Kalidindi,et al.  Spectral calibration of crystal plasticity models , 2006 .

[33]  Surya R. Kalidindi,et al.  A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models , 2011 .

[34]  Gwénaëlle Proust,et al.  Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 , 2009 .

[35]  Steven E. Olson,et al.  A fracture mechanics methodology assessment for fretting fatigue , 2003 .

[36]  Mark J. Beran,et al.  Statistical Continuum Theories , 1965 .

[37]  T. A. Mason,et al.  Use of microstructural statistics in predicting polycrystalline material properties , 1999 .

[38]  Matthew Barnett,et al.  Deformation microstructures and textures of some cold rolled Mg alloys , 2004 .

[39]  Yijun Liu,et al.  Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites , 2004 .

[40]  H. Bunge Texture Analysis in Materials Science , 1982 .

[41]  Farrokh Mistree,et al.  Plasticity-Related Microstructure-Property Relations for Materials Design , 2007 .

[42]  I. Hunter,et al.  The identification of nonlinear biological systems: Volterra kernel approaches , 2007, Annals of Biomedical Engineering.

[43]  Joseph A. Carpenter,et al.  Z1. Characterization of Thermo-Mechanical Behaviors of Advanced High Strength Steels (AHSS): Part 1: Formability, Weldability and Performance Evaluations of AHSS Parts for Automotive Structures , 2006 .

[44]  Farrokh Mistree,et al.  An Inductive Design Exploration Method for Robust Multiscale Materials Design , 2008 .

[45]  Surya R. Kalidindi,et al.  Thermo-Elastic Localization Relationships for Multi-Phase Composites , 2010 .

[46]  Surya R. Kalidindi,et al.  Modeling Anisotropic Stress-Strain Response and Crystallographic Texture Evolution in α-Titanium during Large Plastic Deformation using Taylor-Type Models: Influence of Initial Texture and Purity , 2008 .

[47]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[48]  Su Hao,et al.  A hierarchical multi-physics model for design of high toughness steels , 2003 .

[49]  Ricardo A. Lebensohn,et al.  A model for texture development dominated by deformation twinning: Application to zirconium alloys , 1991 .

[50]  John E. Carsley,et al.  Warm Hemming of Magnesium Sheet , 2007 .

[51]  David N. Seidman,et al.  Three-Dimensional Atom-Probe Tomography: Advances and Applications , 2007 .

[52]  Laurent Capolungo,et al.  Variant selection during secondary twinning in Mg–3%Al , 2010 .

[53]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[54]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[55]  Surya R. Kalidindi,et al.  Formulation and calibration of higher-order elastic localization relationships using the MKS approach , 2011 .

[56]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[57]  G. Spanos,et al.  Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy , 2010 .

[58]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[59]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[60]  David T. Fullwood,et al.  Spectral representation of higher-order localization relationships for elastic behavior of polycrystalline cubic materials , 2008 .

[61]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[62]  Dennis M. Dimiduk,et al.  Systems engineering of gamma titanium aluminides: impact of fundamentals on development strategy , 1998 .

[63]  Talal Al-Samman,et al.  Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms , 2008 .

[64]  Gregory B Olson Systems design of hierarchically structured materials: Advanced steels , 1998 .

[65]  Adam L. Pilchak,et al.  Estimation of grain boundary diffusivity in near-α titanium polycrystals , 2011 .

[66]  Peter Neumann,et al.  Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes , 2003 .

[67]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[68]  Surya R. Kalidindi,et al.  Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge system , 2012 .

[69]  H. Zandbergen,et al.  Application of the dual‐beam FIB/SEM to metals research , 2004, Journal of microscopy.

[70]  Surya R. Kalidindi,et al.  A Novel Framework for Building Materials Knowledge Systems , 2010 .

[71]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[72]  S. Kalidindi,et al.  Estimating the response of polycrystalline materials using sets of weighted statistical volume elements , 2012 .

[73]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[74]  Surya R. Kalidindi,et al.  Deformation twinning in AZ31: Influence on strain hardening and texture evolution , 2010 .

[75]  J. Buffière,et al.  Three-dimensional study of a fretting crack using synchrotron X-ray micro-tomography , 2007 .

[76]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[77]  J. McCoy Macroscopic Response of Continua with Random Microstructures , 1981 .

[78]  Dennis M. Dimiduk,et al.  Microstructure development in gamma alloy mill products by thermomechanical processing , 1998 .

[79]  Joseph Zarka,et al.  Modelling small deformations of polycrystals , 1986 .

[80]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[81]  Gary G. R. Green,et al.  Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network , 1994, Biological Cybernetics.

[82]  Carelyn E. Campbell,et al.  Systems design of high performance stainless steels II. Prototype characterization , 2000 .

[83]  G. B. Olson,et al.  Systems design of high performance stainless steels I. Conceptual and computational design , 2000 .

[84]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[85]  D. Fullwood,et al.  Microstructure reconstructions from 2-point statistics using phase-recovery algorithms , 2008 .

[86]  Surya R. Kalidindi,et al.  Strain hardening due to deformation twinning in α-titanium: Mechanisms , 2006 .

[87]  B. Flannery,et al.  Three-Dimensional X-ray Microtomography , 1987, Science.

[88]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[89]  Olena KALOKHTINA,et al.  Atom Probe Tomography , 2012 .

[90]  O. Graessel,et al.  High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application , 2000 .

[91]  Michael A. Groeber,et al.  Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity , 2004 .

[92]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[93]  J. M. Larsen,et al.  Nominal vs Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature , 2009 .

[94]  Luc Dormieux,et al.  FFT-based methods for the mechanics of composites: A general variational framework , 2010 .

[95]  Reji John,et al.  Life prediction under tension of titanium alloys that develop an oxygenated brittle case during use , 2011 .

[96]  S. Kalidindi,et al.  Crystal plasticity simulations using discrete Fourier transforms , 2009 .

[97]  L. P. Karjalainen,et al.  Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures , 2007 .

[98]  Surya R. Kalidindi,et al.  Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols , 2011 .

[99]  Jagan M. Padbidri,et al.  Minimal kinematic boundary conditions for simulations of disordered microstructures , 2005 .

[100]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[101]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[102]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[103]  M. Graef,et al.  Microstructural tomography of a Ni(70)Cr(20)Al(10) superalloy using focused ion beam microscopy. , 2009, Ultramicroscopy.

[104]  Nicholas Zabaras,et al.  A maximum entropy approach for property prediction of random microstructures , 2006 .

[105]  J. Willis,et al.  Variational and Related Methods for the Overall Properties of Composites , 1981 .

[106]  David T. Fullwood,et al.  A strong contrast homogenization formulation for multi-phase anisotropic materials , 2008 .

[107]  Dennis M. Dimiduk,et al.  Progress in the understanding of gamma titanium aluminides , 1991 .

[108]  Surya R. Kalidindi,et al.  Prediction of crystallographic texture evolution and anisotropic stress–strain curves during large plastic strains in high purity α-titanium using a Taylor-type crystal plasticity model , 2007 .

[109]  Surya R. Kalidindi,et al.  Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems , 2010 .

[110]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[111]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[112]  Byung-Hoon Kim,et al.  The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression , 2008 .

[113]  A. Rollett,et al.  Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms , 2011 .

[114]  John Hinde,et al.  Statistical Modelling in R , 2009 .

[115]  C. Campbell Systems design of high-performance stainless steels , 1997 .

[116]  A. Gokhale,et al.  Representative volume element for non-uniform micro-structure , 2002 .

[117]  Mark T. Smith,et al.  Characterization of Thermo-Mechanical Behaviors of Advanced High-Strength Steels (AHSS): Formability, Weldability and Performance Evaluations of AHSS Parts for Automotive Structures , 2009 .

[118]  Horng-Yu Wu,et al.  Mechanical and anisotropic behaviors of Mg-Li-Zn alloy thin sheets , 2008 .

[119]  Frédéric Barlat,et al.  Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening , 2006 .

[120]  E. Maire,et al.  On the application of x-ray microtomography in the field of materials science , 2001 .

[121]  Mamoru Mabuchi,et al.  Life cycle inventory study on magnesium alloy substitution in vehicles , 2007 .

[122]  A. Fazekas,et al.  A new methodology based on X-ray micro-tomography to estimate stress concentrations around inclusions in high strength steels , 2009 .

[123]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[124]  D. Fullwood,et al.  Gradient-based microstructure reconstructions from distributions using fast Fourier transforms , 2008 .

[125]  G. Proust,et al.  Procedures for construction of anisotropic elastic–plastic property closures for face-centered cubic polycrystals using first-order bounding relations , 2006 .

[126]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[127]  P. Cloetens,et al.  X-ray micro-tomography an attractive characterisation technique in materials science , 2003 .

[128]  Brent L. Adams,et al.  Biaxial creep of textured zircaloy II: Crystal mean plastic modelling , 1985 .

[129]  P. Voorhees,et al.  Quantitative serial sectioning analysis , 2001, Journal of microscopy.

[130]  Dennis M. Dimiduk,et al.  The role of grain size and selected microstructural parameters in strengthening fully lamellar TiAl alloys , 1998 .

[131]  S. Kalidindi,et al.  Finite approximations to the second-order properties closure in single phase polycrystals , 2005 .

[132]  P. Van Houtte,et al.  Application of plastic potentials to strain rate sensitive and insensitive anisotropic materials , 1994 .

[133]  David T. Fullwood,et al.  Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents , 2006 .

[134]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[135]  S. R. Thompson,et al.  Fatigue Crack Growth Rate Characteristics of Laser Shock Peened Ti-6Al-4V , 1999 .

[136]  Teddy Craciunescu,et al.  3D X-ray micro-tomography for modeling of NB3SN multifilamentary superconducting wires , 2007 .

[137]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[138]  Salvatore Torquato,et al.  Effective electrical conductivity of two‐phase disordered composite media , 1985 .

[139]  H. Fraser,et al.  Atomic scale structure and chemical composition across order-disorder interfaces. , 2009, Physical review letters.

[140]  Farrokh Mistree,et al.  An inductive design exploration method for hierarchical systems design under uncertainty , 2008 .

[141]  S. Kalidindi,et al.  Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures , 2009 .

[142]  Stéphane Godet,et al.  Twinning and texture development in two Mg alloys subjected to loading along three different strain paths , 2007 .

[143]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[144]  Andrei A. Gusev,et al.  Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite , 2000 .

[145]  M. Mabuchi,et al.  Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy , 2008 .

[146]  Dennis M. Dimiduk,et al.  Microstructural Changes and Estimated Strengthening Contributions in a Gamma Alloy Ti-45Al-5Nb Pack-Rolled Sheet (Preprint) , 2009 .

[147]  H. Garmestani,et al.  Microstructure design of a two phase composite using two-point correlation functions , 2004 .

[148]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[149]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .