Formalisation and execution of Linear Algebra: theorems and algorithms
暂无分享,去创建一个
[1] R. H.,et al. The Principles of Mathematics , 1903, Nature.
[2] G. B. M.. Principia Mathematica , 1911, Nature.
[3] M. Lecat. Erreurs de mathématiciens des origines à nos jours , 1935 .
[4] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[5] D. G. Zill. A First Course in Differential Equations: With Modeling Applications , 1951 .
[6] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[7] Kurt Gödel,et al. On Formally Undecidable Propositions of Principia Mathematica and Related Systems , 1966 .
[8] Frank Harary,et al. Graph Theory , 2016 .
[9] V. Strassen. Gaussian elimination is not optimal , 1969 .
[10] Dennis Child,et al. The essentials of factor analysis , 1970 .
[11] G. H. Bradley. Algorithms for Hermite and Smith normal matrices and linear Diophantine equations , 1971 .
[12] G. Nemhauser,et al. Integer Programming , 2020 .
[13] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[14] Allan Borodin,et al. Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[15] H. Cantor. Ueber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. , 1984 .
[16] K. McCurley,et al. A rigorous subexponential algorithm for computation of class groups , 1989 .
[17] M. Hung,et al. An application of the Hermite normal form in integer programming , 1990 .
[18] Lawrence C. Paulson,et al. ML for the working programmer , 1991 .
[19] John W. Auer,et al. Linear algebra with applications , 1996 .
[20] Lawrence C. Paulson,et al. Isabelle: The Next 700 Theorem Provers , 2000, ArXiv.
[21] Jon P. May. Simplicial objects in algebraic topology , 1993 .
[22] G. Strang. The Fundamental Theorem of Linear Algebra , 1993 .
[23] Nancy G. Leveson,et al. An investigation of the Therac-25 accidents , 1993, Computer.
[24] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[25] S. Axler. Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.
[26] G. Mackiw. A Note on the Equality of the Column and Row Rank of a Matrix , 1995 .
[27] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[28] Lawrence C. Paulson,et al. ML for the working programmer (2. ed.) , 1996 .
[29] Michael J. C. Gordon,et al. Set Theory, Higher Order Logic or Both? , 1996, TPHOLs.
[30] David B. MacQueen,et al. The Definition of Standard ML (Revised) , 1997 .
[31] T. Hales. The Kepler conjecture , 1998, math/9811078.
[32] P. Cameron. Naïve set theory , 1998 .
[33] G. E. Reeves,et al. What Really Happened on Mars , 1998 .
[34] Markus Wenzel,et al. Isar - A Generic Interpretative Approach to Readable Formal Proof Documents , 1999, TPHOLs.
[35] L. Fuchs,et al. Modules over non-Noetherian domains , 2000 .
[36] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[37] S. Chapman,et al. Non-Noetherian commutative ring theory , 2000 .
[38] Bolian Liu,et al. Matrices in Combinatorics and Graph Theory , 2000, Network Theory and Applications.
[39] Victor Y. Pan,et al. Computation of Approximate Polynomial GCDs and an Extension , 2001, Inf. Comput..
[40] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[41] Markus Wenzel,et al. Isabelle, Isar - a versatile environment for human readable formal proof documents , 2002 .
[42] R. Y. Sharp,et al. MODULES OVER NON-NOETHERIAN DOMAINS (Mathematical Surveys and Monographs 84) By LÁSZLÓ FUCHS and LUIGI SALCE: 613 pp., US$109.00, ISBN 0-8218-1963-1 (American Mathematical Society, Providence, RI, 2001) , 2002 .
[43] Greg O'Keefe. Towards a Readable Formalisation of Category Theory , 2004, Electron. Notes Theor. Comput. Sci..
[44] Lawrence C. Paulson,et al. Set theory for verification: I. From foundations to functions , 1993, Journal of Automated Reasoning.
[45] L. Beineke,et al. Topics in algebraic graph theory , 2004 .
[46] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[47] Lawrence C. Paulson,et al. Set theory for verification. II: Induction and recursion , 1995, Journal of Automated Reasoning.
[48] John Harrison,et al. A HOL Theory of Euclidean Space , 2005, TPHOLs.
[49] Greg O'Keefe. Category Theory to Yoneda's Lemma , 2005, Arch. Formal Proofs.
[50] J. Ramanujam,et al. Beyond unimodular transformations , 1995, The Journal of Supercomputing.
[51] Pavel Pudil,et al. Introduction to Statistical Pattern Recognition , 2006 .
[52] Steven Obua. Partizan Games in Isabelle/HOLZF , 2006, ICTAC.
[53] Fred J. Vermolen,et al. Numerical Methods in Scientific Computing , 2006 .
[54] M. Anthony,et al. Advanced linear algebra , 2006 .
[55] L. Hogben. Handbook of Linear Algebra , 2006 .
[56] Nathaniel E. Helwig,et al. An Introduction to Linear Algebra , 2006 .
[57] Amy Nicole Langville,et al. Google's PageRank and beyond - the science of search engine rankings , 2006 .
[58] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[59] Christel Baier,et al. Principles of model checking , 2008 .
[60] John Matthews,et al. Imperative Functional Programming with Isabelle/HOL , 2008, TPHOLs.
[61] Michael Meyling,et al. Axiomatic Set Theory , 2008 .
[62] Michael Norrish,et al. seL4: formal verification of an OS kernel , 2009, SOSP '09.
[63] René Thiemann,et al. Certification of Termination Proofs Using CeTA , 2009, TPHOLs.
[64] Assia Mahboubi,et al. An introduction to small scale reflection in Coq , 2010, J. Formaliz. Reason..
[65] Tobias Nipkow,et al. Code Generation via Higher-Order Rewrite Systems , 2010, FLOPS.
[66] René Thiemann,et al. Abstract Rewriting , 2010, Arch. Formal Proofs.
[67] René Thiemann,et al. Executable Matrix Operations on Matrices of Arbitrary Dimensions , 2010, Arch. Formal Proofs.
[68] M. Gockenbach. Finite-Dimensional Linear Algebra , 2010 .
[69] Georges Gonthier. Point-Free, Set-Free Concrete Linear Algebra , 2011, ITP.
[70] Tobias Nipkow,et al. Gauss-Jordan Elimination for Matrices Represented as Functions , 2011, Arch. Formal Proofs.
[71] Samuel P. Ferguson,et al. The Kepler conjecture : the Hales-Ferguson proof by Thomas Hales, Samuel Ferguson , 2011 .
[72] Álgebra Aritmética. Gauss–Jordan Elimination , 2011 .
[73] Jónathan Heras,et al. Towards a Certified Computation of Homology Groups for Digital Images , 2012, CTIC.
[74] Christian Sternagel. Proof Pearl—A Mechanized Proof of GHC’s Mergesort , 2012, Journal of Automated Reasoning.
[75] John Harrison,et al. The HOL Light Theory of Euclidean Space , 2012, Journal of Automated Reasoning.
[76] Jesús María Aransay Azofra,et al. Formalizing an abstract algebra textbook in Isabelle/HOL , 2012 .
[77] Chris Kapulkin,et al. Univalence in Simplicial Sets , 2012, 1203.2553.
[78] Vincent Siles,et al. A Refinement-Based Approach to Computational Algebra in Coq , 2012, ITP.
[79] Thierry Coquand,et al. A formal proof of Sasaki-Murao algorithm , 2012, J. Formaliz. Reason..
[80] Andreas Lochbihler,et al. Light-Weight Containers for Isabelle: Efficient, Extensible, Nestable , 2013, ITP.
[81] Maxime Dénès,et al. Étude formelle d'algorithmes efficaces en algèbre linéaire. (Formal study of efficient algorithms in linear algebra) , 2013 .
[82] Tobias Nipkow,et al. Data Refinement in Isabelle/HOL , 2013, ITP.
[83] Clemens Ballarin. Locales: A Module System for Mathematical Theories , 2013, Journal of Automated Reasoning.
[84] Brian Huffman,et al. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL , 2013, CPP.
[85] Thierry Coquand,et al. A Model of Type Theory in Cubical Sets , 2013, TYPES.
[86] Jeremy Avigad,et al. A Machine-Checked Proof of the Odd Order Theorem , 2013, ITP.
[87] Jose Divasón,et al. Formalization and Execution of Linear Algebra: From Theorems to Algorithms , 2013, LOPSTR.
[88] Jose Divasón,et al. Rank-Nullity Theorem in Linear Algebra , 2013, Arch. Formal Proofs.
[89] Johannes Hölzl,et al. Type Classes and Filters for Mathematical Analysis in Isabelle/HOL , 2013, ITP.
[90] Antonio J. Durán Guardeño,et al. Misfortunes of a mathematicians' trio using Computer Algebra Systems: Can we trust? , 2013, ArXiv.
[91] Vasilios Evangelos Tourloupis. Hermite normal forms and its cryptographic applications , 2013 .
[92] Cyril Cohen,et al. Refinements for Free! , 2013, CPP.
[93] Tobias Nipkow,et al. A Fully Verified Executable LTL Model Checker , 2013, CAV.
[94] Jose Divasón,et al. Obtaining an ACL2 Specification from an Isabelle/HOL Theory , 2014, AISC.
[95] Jose Divasón,et al. Gauss-Jordan Algorithm and Its Applications , 2014, Arch. Formal Proofs.
[96] Ondrej Kuncar,et al. From Types to Sets in Isabelle / HOL Extented Abstract , 2014 .
[97] Jeremy Avigad,et al. Formally verified mathematics , 2014, Commun. ACM.
[98] René Thiemann,et al. Matrices, Jordan Normal Forms, and Spectral Radius Theory , 2015, Arch. Formal Proofs.
[99] Lawrence C. Paulson. A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle , 2015, Journal of Automated Reasoning.
[100] Jose Divasón,et al. QR Decomposition , 2015, Arch. Formal Proofs.
[101] Manuel Eberl,et al. A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL , 2015, CPP.
[102] Echelon Form , 2015, Arch. Formal Proofs.
[103] René Thiemann. Implementing field extensions of the form Q [ √ b ] ∗ , 2015 .
[104] Tobias Nipkow,et al. Mining the Archive of Formal Proofs , 2015, CICM.
[105] Jose Divasón,et al. Hermite Normal Form , 2015, Arch. Formal Proofs.
[106] Jose Divasón,et al. Formalisation in higher-order logic and code generation to functional languages of the Gauss-Jordan algorithm , 2015, J. Funct. Program..
[107] Jose Divasón,et al. Generalizing a Mathematical Analysis Library in Isabelle/HOL , 2015, NFM.
[108] René Thiemann,et al. Algebraic Numbers in Isabelle/HOL , 2016, ITP.
[109] Lawrence C. Paulson,et al. A modular, efficient formalisation of real algebraic numbers , 2016, CPP.
[110] Vincent Siles,et al. Formalized linear algebra over Elementary Divisor Rings in Coq , 2016, Log. Methods Comput. Sci..
[111] José Divasón Mallagaray,et al. Verified Computer Linear Algebra , 2016 .
[112] Cayley-Hamilton Theorem , 2016 .
[113] Jose Divasón,et al. Formalisation of the computation of the echelon form of a matrix in Isabelle/HOL , 2016, Formal Aspects of Computing.
[114] Johannes Hölzl,et al. A Formally Verified Proof of the Central Limit Theorem , 2014, Journal of Automated Reasoning.
[115] Tobias Nipkow,et al. A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.
[116] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .