Eigendecomposition of Block Tridiagonal Matrices

Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and zeros of appropriate matrix polynomials. We use this connection with matrix polynomials to derive a closed-form expression for the eigenvectors of block tridiagonal matrices, which eliminates the need for their direct calculation and can lead to a faster calculation of eigenvalues. We also demonstrate with an example that our work can lead to fast algorithms for the eigenvector expansion for block tridiagonal matrices.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[3]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[4]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[5]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[6]  F. R. Gantmakher The Theory of Matrices , 1984 .

[7]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[8]  S. Iida,et al.  Statistical scattering theory, the supersymmetry method and universal conductance fluctuations , 1990 .

[9]  David W. Lewis,et al.  Matrix theory , 1991 .

[10]  Nikhil Balram,et al.  Recursive structure of noncausal Gauss-Markov random fields , 1992, IEEE Trans. Inf. Theory.

[11]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[12]  N. Balram,et al.  Noncausal Gauss Markov random fields: Parameter structure and estimation , 1993, IEEE Trans. Inf. Theory.

[13]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[14]  Zyczkowski,et al.  Periodic band random matrices, curvature, and conductance in disordered media. , 1994, Physical review letters.

[15]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[16]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[17]  Antonio J. Durán,et al.  ORTHOGONAL MATRIX POLYNOMIALS: ZEROS AND BLUMENTHAL'S THEOREM , 1996 .

[18]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[19]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Weiwei Sun,et al.  The minimal eigenvalues of a class of block-tridiagonal matrices , 1997, IEEE Trans. Inf. Theory.

[21]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[22]  José M. F. Moura,et al.  Data assimilation in large time-varying multidimensional fields , 1999, IEEE Trans. Image Process..

[23]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[24]  Christian H. Bischof,et al.  A framework for symmetric band reduction , 2000, TOMS.

[25]  Markus Püschel,et al.  In search of the optimal Walsh-Hadamard transform , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[26]  Wilfried N. Gansterer,et al.  An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems , 2002, TOMS.

[27]  Orthogonal matrix polynomials and quadrature formulas , 2002 .

[28]  José M. F. Moura,et al.  The Algebraic Approach to the Discrete Cosine and Sine Transforms and Their Fast Algorithms , 2003, SIAM J. Comput..

[29]  J. Mason,et al.  Integration Using Chebyshev Polynomials , 2003 .

[30]  Wilfried N. Gansterer,et al.  Computing Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices , 2003, SIAM J. Sci. Comput..

[31]  I. Pacharoni,et al.  Matrix valued orthogonal polynomials of the Jacobi type , 2003 .

[32]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[33]  Antonio J. Durán Guardeño,et al.  Orthogonal matrix polynomials, scalar-type Rodrigues' formulas and Pearson equations , 2005, J. Approx. Theory.

[34]  José M. F. Moura,et al.  Block matrices with L-block-banded inverse: inversion algorithms , 2005, IEEE Transactions on Signal Processing.

[35]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[36]  José M. F. Moura,et al.  Algebraic Signal Processing Theory , 2006, ArXiv.

[37]  Bernhard Schölkopf,et al.  Introduction to Semi-Supervised Learning , 2006, Semi-Supervised Learning.

[38]  Holger Dette,et al.  Matrix Measures and Random Walks with a Block Tridiagonal Transition Matrix , 2006, SIAM J. Matrix Anal. Appl..

[39]  Ahmed H. Sameh,et al.  A parallel hybrid banded system solver: the SPIKE algorithm , 2006, Parallel Comput..

[40]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[41]  José M. F. Moura,et al.  Algebraic Signal Processing Theory: Cooley–Tukey Type Algorithms for DCTs and DSTs , 2007, IEEE Transactions on Signal Processing.

[42]  José M. F. Moura,et al.  Algebraic Signal Processing Theory: 1-D Space , 2008, IEEE Transactions on Signal Processing.

[43]  Per Christian Hansen,et al.  Block tridiagonal matrix inversion and fast transmission calculations , 2008, J. Comput. Phys..

[44]  Franz Franchetti,et al.  Discrete fourier transform on multicore , 2009, IEEE Signal Processing Magazine.

[45]  F. Alberto Grünbaum,et al.  The Karlin–McGregor formula for a variant of a discrete version of Walsh's spider , 2009 .

[46]  Markus Püschel,et al.  Algebraic Signal Processing Theory: Cooley–Tukey Type Algorithms for Real DFTs , 2008, IEEE Transactions on Signal Processing.

[47]  Jelena Kovacevic,et al.  Algebraic Signal Processing Theory: Cooley-Tukey-Type Algorithms for Polynomial Transforms Based on Induction , 2010, SIAM J. Matrix Anal. Appl..

[48]  Jelena Kovacevic,et al.  Algebraic Signal Processing Theory: 1-D Nearest Neighbor Models , 2012, IEEE Transactions on Signal Processing.

[49]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.