The Evolution of the Cognitive Map

The hippocampal formation of mammals and birds mediates spatial orientation behaviors consistent with a map-like representation, which allows the navigator to construct a new route across unfamiliar terrain. This cognitive map thus appears to underlie long-distance navigation. Its mediation by the hippocampal formation and its presence in birds and mammals suggests that at least one function of the ancestral medial pallium was spatial navigation. Recent studies of the goldfish and certain reptile species have shown that the medial pallium homologue in these species can also play an important role in spatial orientation. It is not yet clear, however, whether one type of cognitive map is found in these groups or indeed in all vertebrates. To answer this question, we need a more precise definition of the map. The recently proposed parallel map theory of hippocampal function provides a new perspective on this question, by unpacking the mammalian cognitive map into two dissociable mapping processes, mediated by different hippocampal subfields. If the cognitive map of non-mammals is constructed in a similar manner, the parallel map theory may facilitate the analysis of homologies, both in behavior and in the function of medial pallium subareas.

[1]  Lucia F Jacobs,et al.  Unpacking the cognitive map: the parallel map theory of hippocampal function. , 2003, Psychological review.

[2]  N. Ulanovsky,et al.  Sensory Ecology , 1978, NATO Advanced Study Institutes Series.

[3]  Cristina Broglio,et al.  Conservation of Spatial Memory Function in the Pallial Forebrain of Reptiles and Ray-Finned Fishes , 2002, The Journal of Neuroscience.

[4]  J. Wild,et al.  Intratelencephalic connections of the hippocampus in pigeons (Columba livia) , 2002, The Journal of comparative neurology.

[5]  Marian Stamp Dawkins,et al.  Bird Navigation: the Solution of a Mystery?, R. Robin Baker. Hodder & Stoughton, London (1984), x, +256. Price £9.75 (paperback) , 1984 .

[6]  J. Hagstrum,et al.  Infrasound and the Avian Navigational Map , 2001, Journal of Navigation.

[7]  A C Kamil,et al.  Performance of four seed-caching corvid species in the radial-arm maze analog. , 1994, Journal of comparative psychology.

[8]  S. Glickman Some thoughts on the evolution of comparative psychology. , 1985 .

[9]  David F. Sherry,et al.  Sun compass and landmark orientation by black-capped chickadees (Parus atricapillus). , 1998 .

[10]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[11]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[12]  R. Morris,et al.  Place navigation impaired in rats with hippocampal lesions , 1982, Nature.

[13]  D. Crews,et al.  Effects of medial and dorsal cortex lesions on spatial memory in lizards , 2001, Behavioural Brain Research.

[14]  Juan P. Vargas,et al.  Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes , 1994 .

[15]  J. López,et al.  Place and cue learning in turtles , 2000 .

[16]  J. J. Siegel,et al.  Electrophysiological profile of avian hippocampal unit activity: A basis for regional subdivisions , 2002, The Journal of comparative neurology.

[17]  A. Siegel,et al.  Efferent connections of the septal area in the pigeon. , 1978, Brain, behavior and evolution.

[18]  L. Nadel,et al.  Behavioural brain research in naturalistic and semi-naturalistic settings , 1995 .

[19]  B. McNaughton,et al.  Hippocampectomized rats are capable of homing by path integration. , 1999, Behavioral neuroscience.

[20]  H. G. Wallraff Conceptual approaches to avian navigation systems , 1990, Experientia.

[21]  R. Robin Baker P. Berthold Orientation in Birds , 1992, Animal Behaviour.

[22]  Kenneth J. Lohmann,et al.  Long-distance navigation in sea turtles , 1999 .

[23]  S. Bilbo,et al.  Anticholinergic effects in frogs in a Morris water maze analog , 2000, Physiology & Behavior.

[24]  Lohmann,et al.  Orientation and open-sea navigation in sea turtles , 1996, The Journal of experimental biology.

[25]  Gerald E. Hough,et al.  Intrahippocampal connections in the pigeon (Columba livia) as revealed by stimulation evoked field potentials , 2002, The Journal of comparative neurology.

[26]  R P Kesner,et al.  Effects of hippocampal and parietal cortex lesions on memory for egocentric distance and spatial location information in rats. , 1998, Behavioral neuroscience.

[27]  W. Keeton,et al.  Avian orientation and navigation. , 1979, Annual review of physiology.

[28]  A Gagliardo,et al.  The neuroethology of cognitive maps: contributions from research on the hippocampus and homing pigeon navigation. , 1997, Archives italiennes de biologie.

[29]  L. Day The Importance of Hippocampus-Dependent Non-Spatial Tasks in Analyses of Homology and Homoplasy , 2003, Brain, Behavior and Evolution.

[30]  Gustav Kramer,et al.  Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? , 1953, Journal für Ornithologie.

[31]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[32]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[33]  I. Cuthill,et al.  Sexual Selection and the Mismeasure of Color , 1994, The American Naturalist.

[34]  O. Güntürkün,et al.  Orientation and lateralized cue use in pigeons navigating a large indoor environment. , 2002, The Journal of experimental biology.

[35]  D. Crews,et al.  Spatial and reversal learning in congeneric lizards with different foraging strategies , 1999, Animal Behaviour.

[36]  M. Cheal Mammals , 1991, Experimental Gerontology.

[37]  Andrea D. Székely,et al.  The avian hippocampal formation: subdivisions and connectivity , 1999, Behavioural Brain Research.

[38]  L. Jacobs,et al.  Spatial Orientation on a Vertical Maze in Free-Ranging Fox Squirrels (Sciurus niger) , 1999 .

[39]  I. Whishaw,et al.  Similarities vs. differences in place learning and circadian activity in rats after fimbria‐fornix section or ibotenate removal of hippocampal cells , 1995, Hippocampus.

[40]  J. J. Siegel,et al.  The Homing Pigeon Hippocampus and Space: In Search of Adaptive Specialization , 2003, Brain, Behavior and Evolution.

[41]  W E Skaggs,et al.  Deciphering the hippocampal polyglot: the hippocampus as a path integration system. , 1996, The Journal of experimental biology.

[42]  W. Wiltschko,et al.  Sun compass orientation in seed-caching scrub jays (Aphelocoma coerulescens) , 1989, Journal of Comparative Physiology A.

[43]  F. Martínez-García,et al.  Convergence of Thalamic and Cholinergic Projections in the ‘Dentate Area’ of Lizards , 1998, Brain, Behavior and Evolution.

[44]  Wallraff Seven theses on pigeon homing deduced from empirical findings , 1996, The Journal of experimental biology.

[45]  G. Handelmann,et al.  Hippocampal function: Working memory or cognitive mapping? , 1980 .

[46]  A. Butler,et al.  Telencephalic connections in lizards. I. Projections to cortex , 1984, The Journal of comparative neurology.

[47]  Wiltschko The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? , 1996, The Journal of experimental biology.

[48]  W. Wiltschko,et al.  Pigeon homing: Early experience determines what factors are used for navigation , 1987, Naturwissenschaften.

[49]  M. Srinivasan,et al.  Maze Learning by Honeybees , 1996, Neurobiology of Learning and Memory.

[50]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[51]  F. Papi,et al.  Olfactory navigation in birds , 1990, Experientia.

[52]  Bruce L. McNaughton,et al.  Spatial representation in the rat: Conceptual, behavioral, and neurophysiological perspectives , 1990 .

[53]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[54]  M. Giurfa,et al.  Vectors, routes and maps: new discoveries about navigation in insects , 1999, Trends in Neurosciences.

[55]  P. Best,et al.  Placing hippocampal single‐unit studies in a historical context , 1999, Hippocampus.

[56]  Walcott Pigeon homing: observations, experiments and confusions , 1996, The Journal of experimental biology.

[57]  A. Meyer,et al.  The evolutionary position of turtles revised , 2001, Naturwissenschaften.

[58]  Martin Lindauer,et al.  Experimental behavioral ecology and sociobiology: In memoriam Karl von Frisch, 1886-1982 , 1985 .

[59]  T. Collett,et al.  Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.

[60]  V P Bingman,et al.  Hippocampal lesions impair navigational learning in experienced homing pigeons. , 1992, Behavioral neuroscience.

[61]  Gerald E. Hough,et al.  Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: An anterograde and retrograde tracer study , 2003, The Journal of comparative neurology.

[62]  D. Brodbeck Memory for spatial and local cues: A comparison of a storing and a nonstoring species , 1994 .

[63]  R. Biegler,et al.  Landmark stability is a prerequisite for spatial but not discrimination learning , 1993, Nature.

[64]  Françoise Schenk,et al.  Dissociation between Basic Components of Spatial Memory in Rats , 1995 .

[65]  P. Ioale,et al.  Homing pigeons, hippocampus and spatial cognition , 1995 .

[66]  M. Colombo,et al.  Is the avian hippocampus a functional homologue of the mammalian hippocampus? , 2000, Neuroscience & Biobehavioral Reviews.

[67]  Colette Rivault,et al.  Effects of spatial knowledge and feeding experience on foraging choices in German cockroaches , 2001, Animal Behaviour.

[68]  R. Hanlon,et al.  Experimental evidence for spatial learning on octopuses (octopus bimaculoides). , 2000, Journal of comparative psychology.

[69]  K. Jeffery,et al.  The Hippocampal and Parietal Foundations of Spatial Cognition , 1999 .

[70]  W. Wiltschko,et al.  Magnetic orientation in birds , 1996, The Journal of experimental biology.

[71]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[72]  J. Krebs,et al.  Memory in food-storing birds: from behaviour to brain , 1995, Current Opinion in Neurobiology.

[73]  Neil Burgess,et al.  Integrating hippocampal and parietal functions: a spatial point of view , 1998 .

[74]  Cristina Broglio,et al.  Evolution of Forebrain and Spatial Cognition in Vertebrates: Conservation across Diversity , 2003, Brain, Behavior and Evolution.

[75]  J. Krebs,et al.  Memory for spatial and object-specific cues in food-storing and non-storing birds , 1994, Journal of Comparative Physiology A.

[76]  D. Schacter,et al.  The Evolution of Multiple Memory Systems , 1987 .

[77]  Verner P Bingman,et al.  Maps in birds: representational mechanisms and neural bases , 2002, Current Opinion in Neurobiology.

[78]  J. López,et al.  Spatial learning in turtles , 2001, Animal Cognition.

[79]  P. Berthold,et al.  Orientation in Birds , 1991, Experientia Supplementum.

[80]  Ian Q. Whishaw,et al.  Path Integration Absent in Scent-Tracking Fimbria–Fornix Rats: Evidence for Hippocampal Involvement in “Sense of Direction” and “Sense of Distance” Using Self-Movement Cues , 1999, The Journal of Neuroscience.

[81]  W. C. Hall,et al.  Thalamotelencephalic projections in the turtle (Pseudemys scripta) , 1970, The Journal of comparative neurology.

[82]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[83]  A. Siegel,et al.  Efferent connections of the hippocampus and adjacent regions in the pigeon. , 1978, Brain, behavior and evolution.

[84]  M. F. Brown,et al.  Does a cognitive map guide choices in the radial-arm maze? , 1992, Journal of experimental psychology. Animal behavior processes.

[85]  E. Bostock,et al.  Spatial learning of an escape task by young corn snakes,Elaphe guttata guttata , 1999, Animal Behaviour.

[86]  Abl The debate over olfactory navigation by homing pigeons , 1996, The Journal of experimental biology.

[87]  H. Eichenbaum,et al.  The Hippocampus, Memory, and Place Cells Is It Spatial Memory or a Memory Space? , 1999, Neuron.

[88]  Jackie Chappell,et al.  Homing pigeons primarily use the sun compass rather than fixed directional visual cues in an open-field arena food-searching task , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  V. Bingman,et al.  The avian hippocampus: evidence for a role in the development of the homing pigeon navigational map. , 1990, Behavioral neuroscience.

[90]  A. Craig,et al.  Bird Migration: A General Survey , 2002 .

[91]  C Walcott,et al.  Homing in pigeons. , 1967, Science.

[92]  R. Morris,et al.  Distinct components of spatial learning revealed by prior training and NMDA receptor blockade , 1995, Nature.

[93]  A. Bennett,et al.  Do animals have cognitive maps? , 1996, The Journal of experimental biology.

[94]  W T Keeton The mystery of pigeon homing. , 1974, Scientific American.

[95]  D. Crews,et al.  Relative Medial and Dorsal Cortex Volume in Relation to Foraging Ecology in Congeneric Lizards , 1999, Brain, Behavior and Evolution.

[96]  V. Bingman,et al.  Piriform cortex ablations block navigational map learning in homing pigeons , 1997, Behavioural Brain Research.