A discussion on the computational limitations of outranking methods for land‐use suitability assessment

The family of outranking methods includes a set of well‐known and popular decision‐aid methods. Heterogeneous variables of various scales can be introduced, and data transformations are not required. But it is also recognized that these methods are subject to computational limitations with respect to the number of decision alternatives. Dealing with large raster datasets and considering every raster cell a location alternative, these methods reach their computational limits quickly. This paper discusses these computational limits and presents an iterative approach which enables a modeller to easily and transparently apply outranking methods for land‐suitability assessment with practically no limit in the sizes of the raster datasets. An example using the PROMETHEE outranking approach is performed.

[1]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[2]  P. Vincke,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .

[3]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[4]  Jean Pierre Brans,et al.  HOW TO SELECT AND HOW TO RANK PROJECTS: THE PROMETHEE METHOD , 1986 .

[5]  L D Hopkins,et al.  The Meanings of Trade-Offs in Multiattribute Evaluation Methods: A Comparison , 1989 .

[6]  Stephen J. Carver,et al.  Integrating multi-criteria evaluation with geographical information systems , 1991, Int. J. Geogr. Inf. Sci..

[7]  Lucien Duckstein,et al.  A Multiple Criteria Decision-Making Approach to GIS-Based Land Suitability Evaluation , 1993, Int. J. Geogr. Inf. Sci..

[8]  J. Ronald Eastman,et al.  Multi-criteria and multi-objective decision making for land allocation using GIS , 1998 .

[9]  Adel Guitouni,et al.  Tentative guidelines to help choosing an appropriate MCDA method , 1998, Eur. J. Oper. Res..

[10]  Jacek Malczewski,et al.  GIS and Multicriteria Decision Analysis , 1999 .

[11]  Florent Joerin,et al.  Using GIS and outranking multicriteria analysis for land-use suitability assessment , 2001, Int. J. Geogr. Inf. Sci..

[12]  C. F. Lee,et al.  GIS-based geo-environmental evaluation for urban land-use planning: A case study , 2001 .

[13]  C.C. de Araujo,et al.  Multicriteria Geologic Data Analysis for Mineral Favorability Mapping: Application to a Metal Sulphide Mineralized Area, Ribeira Valley Metallogenic Province, Brazil , 2002 .

[14]  Gerard B. M. Heuvelink,et al.  Using simulated annealing for resource allocation , 2002, Int. J. Geogr. Inf. Sci..

[15]  Thomas L. Saaty,et al.  Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..

[16]  David A. Bennett,et al.  Using Genetic Algorithms to Create Multicriteria Class Intervals for Choropleth Maps , 2003 .

[17]  Oswald Marinoni,et al.  Implementation of the analytical hierarchy process with VBA in ArcGIS , 2004, Comput. Geosci..

[18]  Oswald Marinoni,et al.  A stochastic spatial decision support system based on PROMETHEE , 2005, Int. J. Geogr. Inf. Sci..