DISTRIBUTION AND EVOLUTION OF ZIRCONIUM MINERALIZATION IN PERALKALINE GRANITES AND ASSOCIATED PEGMATITES OF THE KHAN BOGD COMPLEX, SOUTHERN MONGOLIA

The western part of the Khan Bogd complex comprises (in order of emplacement): microcline-phyric granite, peralkaline aegirine-arfvedsonite granite (main intrusive phase) and aplite-pegmatite veins confined predominantly to the apical parts of the intrusion. These rocks are interpreted to represent products of extreme fractional crystallization what involved an increase in index of peralkalinity (from 1.0 in the porphyritic granite to 1.3 in the main phase to 2.5 in the pegmatite) and whole-rock Zr content (864 to 1130 to 16900 ppm). The hydrothermal stage involved replacement of the primary elpidite by late-stage Ca-rich elpidite or armstrongite, and then precipitation of minor gittinsite and abundant zircon. With the exception of zircon, all secondary zirconosilicates exhibit relative enrichment in light REE.

[1]  D. Cunningham,et al.  Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints , 2010 .

[2]  R. Čopjaková,et al.  THE INVOLVEMENT OF F, CO2, AND As IN THE ALTERATION OF Zr–Th–REE-BEARING ACCESSORY MINERALS IN THE HORA SVATÉ KATEŘINY A-TYPE GRANITE, CZECH REPUBLIC , 2009 .

[3]  M. Reichow,et al.  Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance , 2009 .

[4]  C. Manning,et al.  Letter. Hydration state and activity of aqueous silica in H2O-CO2 fluids at high pressure and temperature , 2009 .

[5]  M. Marks,et al.  RECONSTRUCTION OF MAGMATIC TO SUBSOLIDUS PROCESSES IN AN AGPAITIC SYSTEM USING EUDIALYTE TEXTURES AND COMPOSITION: A CASE STUDY FROM TAMAZEGHT, MOROCCO , 2009 .

[6]  P. Davidson,et al.  The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites , 2009 .

[7]  A. Berger,et al.  Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes , 2008 .

[8]  A. J. Wainwright Volcanostratigraphic framework and magmatic evolution of the Oyu Tolgoi porphyry Cu-Au district, South Mongolia , 2008 .

[9]  C. Sue,et al.  Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis , 2007 .

[10]  E. A. Tsareva,et al.  Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak intrusion, Eastern Transbaikal region , 2007 .

[11]  E. B. Sal’nikova,et al.  Geology, Geochronology, and Geodynamics of the Khan Bogd alkali granite pluton in southern Mongolia , 2006 .

[12]  J. Qiu,et al.  A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China , 2006, Mineralogical Magazine.

[13]  S. Salvi,et al.  Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada , 2006 .

[14]  Lutz Nasdala,et al.  Low-temperature Zr mobility: An in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O + HCl ± SiO2 fluids , 2006 .

[15]  T. Pettke,et al.  Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry , 2005 .

[16]  G. Henderson,et al.  Measuring quartz solubility by in situ weight-loss determination using a hydrothermal diamond cell , 2004 .

[17]  R. Macdonald,et al.  Experimental Constraints on the Relationships between Peralkaline Rhyolites of the Kenya Rift Valley , 2003 .

[18]  M. Marks,et al.  Quantification of Magmatic and Hydrothermal Processes in a Peralkaline Syenite–Alkali Granite Complex Based on Textures, Phase Equilibria, and Stable and Radiogenic Isotopes , 2003 .

[19]  U. Andersson,et al.  Mineralogical-geochemical evolution and the formation of REE fluorocarbonates in a silicic rapakivi granite system; the Rodo complex, Central Sweden , 2003 .

[20]  S. Lukkari Petrography and geochemistry of the topaz-bearing granite stocks in Artjärvi and Sääskjärvi, western margin of the Wiborg rapakivi granite batholith , 2002 .

[21]  B. Windley,et al.  A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia , 2002 .

[22]  R. Trumbull,et al.  Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-enrichment from Melt Inclusions , 2002 .

[23]  A. Zaitsev,et al.  CALCITE – AMPHIBOLE – CLINOPYROXENE ROCK FROM THE AFRIKANDA COMPLEX, KOLA PENINSULA, RUSSIA: MINERALOGY AND A POSSIBLE LINK TO CARBONATITES. II. OXYSALT MINERALS , 2002 .

[24]  A. Chakhmouradian,et al.  The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites , 2002 .

[25]  B. Yardley,et al.  Quartz, albite and diopside solubilities in H2O–NaCl and H2O–CO2 fluids at 0.5–0.9 GPa , 2001 .

[26]  A. M. Abdel-Rahman,et al.  Anorogenic magmatism: chemical evolution of the Mount El-Sibai A-type complex (Egypt), and implications for the origin of within-plate felsic magmas , 2001, Geological Magazine.

[27]  Rucheng Wang,et al.  Differentiation and accumulation of fluids in A-type granites: Evidence from accessory mineral study , 2000 .

[28]  A. Williams-Jones,et al.  Hydrothermal REE-rich eudialyte from the Pilanesberg Complex, South Africa , 1999 .

[29]  D. Veblen,et al.  Relationships among zirconosilicates: examination by cathodoluminescence and transmission electron microscopy . , 1999 .

[30]  Zhao Zhenhua,et al.  Partitioning of F between aqueous fluids and albite granite melt and its petrogenetic and metallogenetic significance , 1998 .

[31]  D. Baker,et al.  CHEMICAL CONTROLS ON THE SOLUBILITY OF ZR-BEARING PHASES IN SIMPLIFIED PERALKALINE MELTS AND APPLICATION TO THE STRANGE LAKE INTRUSION, QUEBEC : LABRA DOR , 1998 .

[32]  P. Montero,et al.  The accumulation of rare-earth and high-field-strength elements in peralkaline granitic rocks; the Galineiro orthogneissic complex, northwestern Spain , 1998 .

[33]  Robert F. Martin,et al.  Extreme differentiation of peralkaline rhyolite, Terceira, Azores; a modern analogue of Strange Lake, Labrador? , 1996 .

[34]  S. Salvi,et al.  The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada , 1996 .

[35]  F. Farges Does ZrF “complexation” occur in magmas? , 1996 .

[36]  A. Jones,et al.  Rare Earth Minerals: Chemistry, Origin and Ore Deposits , 1995 .

[37]  S. Wood,et al.  The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals , 1995 .

[38]  S. Salvi,et al.  Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada , 1995 .

[39]  V. A. Troitsky,et al.  The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia , 1995 .

[40]  P. Dulski,et al.  Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids , 1995 .

[41]  B. Charoy,et al.  Zr-, Th-, and REE-Rich Biotite Differentiates in the A-type Granite Pluton of Suzhou (Eastern China): the Key Role of Fluorine , 1994 .

[42]  P. C. Hess,et al.  Raman study of potassium silicate glasses containing Rb+, Sr2+, Y3+ and Zr4+: Implications for cation solution mechanisms in multicomponent silicate liquids , 1994 .

[43]  A. Williams-Jones,et al.  The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Québec-Labrador , 1994 .

[44]  H. Keppler Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks , 1993 .

[45]  S. Salvi,et al.  Reduced orthomagmatic C-O-H-N-NaCl fluids in the Strange Lake rare-metal granitic complex, Quebec/Labrador, Canada , 1992 .

[46]  S. Wood,et al.  Preliminary petrogenetic grids for sodium and calcium zirconosilicate minerals in felsic peralkaline rocks; the SiO 2 -Na 2 ZrO 3 and SiO 2 -CaZrO 3 pseudobinary systems , 1992 .

[47]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[48]  T. Birkett,et al.  Zirconium-bearing minerals of the Strange Lake intrusive complex, Quebec-Labrador , 1992 .

[49]  D. Dingwell,et al.  FLUORINE IN SILICATE GLASSES : A MULTINUCLEAR NUCLEAR MAGNETIC RESONANCE STUDY , 1992 .

[50]  M. Cuney,et al.  Magmatic and hydrothermal R.E.E. fractionation in the Xihuashan granites (SE China) , 1990 .

[51]  S. Salvi,et al.  The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions , 1990 .

[52]  J. G. Price,et al.  Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas , 1989 .

[53]  C. Harris,et al.  RARE-EARTH.RICH EUDIALYTE AND DALYITE FROM A PERALKALINE GRANITE DYKE AT STRAUMSVOLA, DRONNING MAUD LAND, ANTARCTICA , 1987 .

[54]  K. Currie,et al.  The relative stability of elpidite and vlasovite; a P-T indicator for peralkaline rocks , 1985 .

[55]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[56]  E. Watson,et al.  Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry , 1979 .

[57]  J. Nicholls,et al.  XLFRAC: a program for the interactive testing of magmatic differentiation models , 1978 .