Radar Receiver Circuits

Even though MOSFET has been invented much earlier [1] than bipolar transistor [2], the commercial mass-volume foundry implementation of bipolar technology hasbeen introduced more than a decade prior to CMOS. Therefore, some of the classical analog circuit topologies e.g. Gilbert cell mixer or current-mode logic (CML), originally developed for bipolar transistors, were directly adopted in CMOS. However, CMOS technology has differing characteristics that have to be considered during circuit design. Some properties can be utilized to gain advantages. For example, true CMOS logic circuits consume much less current than their CML counterparts. On the other hand, MOS transistors unlike bipolar suffer from high 1/f noise and may hinder straightforward implementation of the Gilbert cell mixer topology for the direct down-conversion architecture. Several circuit techniques have been developed in CMOS in order to overcome this problem [3], [4]. An additional common approach, adopted from III/V technologies, is to use passive resistive mixers [5]. This technique is well suited for MOSFETs, since these may act as passive voltagecontrolled switches, but it is not applicable for bipolar transistors since these act as current-controlled switches.

[1]  G. Carchon,et al.  Implementation of 6kV ESD Protection for a 17GHz LNA in 130nm SiGeC BiCMOS , 2006, 2006 IEEE International Conference on Semiconductor Electronics.

[2]  F. Ellinger 26–34 GHz CMOS mixer , 2004 .

[3]  Linus Maurer,et al.  Comparison of 24 GHz receiver front-ends using active and passive mixers in CMOS , 2009, IET Circuits Devices Syst..

[4]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[5]  W. H. Ku,et al.  Device considerations and modeling for the design of an InP-based MODFET millimeter-wave resistive mixer with superior conversion efficiency , 1995 .

[6]  Robert W. Dutton,et al.  RF ESD protection strategies: Codesign vs. low-C protection , 2005, 2005 Electrical Overstress/Electrostatic Discharge Symposium.

[7]  D. Linten,et al.  A 5 kV HBM transformer-based ESD protected 5-6 GHz LNA , 2007, 2007 IEEE Symposium on VLSI Circuits.

[8]  Henrik Sjoland,et al.  Two 24 GHz receiver front-ends in 130-nm CMOS using SOP technology , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[9]  Robert W. Dutton,et al.  ESD design challenges and strategies in deeply-scaled integrated circuits , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[10]  Francois Danneville,et al.  A new method for on wafer noise measurement , 1993 .

[11]  M.J. Deen,et al.  High-Frequency Noise of Modern MOSFETs: Compact Modeling and Measurement Issues , 2006, IEEE Transactions on Electron Devices.

[12]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[13]  E. van der Heijden,et al.  Low Noise Amplifier with Integrated Balun for 24GHz Car Radar , 2008, 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[14]  F. Ellinger,et al.  26.5-30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN , 2005, IEEE Transactions on Microwave Theory and Techniques.

[15]  L.E. Larson,et al.  A resistively degenerated wide-band passive mixer with low noise figure and +60dBm IIP2 in 0.18μm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[16]  D. J. Allstot,et al.  A resonant pad for ESD protected narrowband CMOS RF applications , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[17]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[18]  M. Tiebout,et al.  A low power 24 GHz LNA in 0.13 μm CMOS , 2008, 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems.

[19]  Vadim Issakov,et al.  Wideband Resistive Ring Mixer for Automotive and Industrial Applications in 0.13 μm CMOS , 2009, 2009 German Microwave Conference.

[20]  A. J. Kelly,et al.  Fundamental Limits on Conversion Loss of Double Sideband Resistive Mixers , 1977 .

[21]  Arpad L. Scholtz,et al.  2 dB noise figure, 10.5 GHz LNA using SiGe bipolar technology , 1999 .

[22]  Kyung-Wan Yu,et al.  CMOS K-band LNAs design counting both interconnect transmission line and RF pad parasitics , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[23]  Kai Chang,et al.  RF and Microwave Wireless Systems , 2000 .

[24]  Ming-Dou Ker,et al.  ESD protection design for giga-Hz RF CMOS LNA with novel impedance-isolation technique , 2003, 2003 Electrical Overstress/Electrostatic Discharge Symposium.

[25]  H. Knapp,et al.  Lumped and distributed lattice-type LC-baluns , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[26]  A. Sedra Microelectronic circuits , 1982 .

[27]  L.E. Larson,et al.  A 24-GHz CMOS Passive Subharmonic Mixer/Downconverter for Zero-IF Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  M. Tiebout,et al.  ESD concept for high-frequency circuits , 2008, EOS/ESD 2008 - 2008 30th Electrical Overstress/Electrostatic Discharge Symposium.

[29]  Vadim Issakov,et al.  ESD-Protected 24 GHz LNA for Radar Applications in SiGe:C Technology , 2009, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[30]  I. Bahl Lumped Elements for RF and Microwave Circuits , 2003 .

[31]  I. Gresham,et al.  A low-noise broadband SiGe mixer for 24GHz ultra-wideband automotive applications , 2003, Radio and Wireless Conference, 2003. RAWCON '03. Proceedings.

[32]  E. Bergeault,et al.  RF mixers using standard digital CMOS 0.35 /spl mu/m process , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[33]  Vadim Issakov,et al.  Low-noise ESD-protected 24 GHz receiver for radar applications in SiGe:C technology , 2009, 2009 Proceedings of ESSCIRC.

[34]  Vadim Issakov,et al.  Comparison of 24 GHz low-noise mixers in CMOS and SiGe:C technologies , 2009, 2009 European Microwave Integrated Circuits Conference (EuMIC).

[35]  R. C. Frye,et al.  A 2-GHz quadrature hybrid implemented in CMOS technology , 2003 .

[36]  P. Wambacq,et al.  Co-design methodology to provide high ESD protection levels in the advanced RF circuits , 2003, 2003 Electrical Overstress/Electrostatic Discharge Symposium.

[37]  B. Keppens,et al.  Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies , 2005, IEEE Transactions on Device and Materials Reliability.

[38]  Trung-Kien Nguyen,et al.  CMOS low-noise amplifier design optimization techniques , 2004, IEEE Transactions on Microwave Theory and Techniques.

[39]  Vadim Issakov,et al.  Compact quadrature receiver for 24 GHz radar applications in 0.13μm CMOS , 2010 .

[40]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[41]  Gabriel M. Rebeiz,et al.  An 18-20 GHz Subharmonic Satellite Down-Converter in 0.18μm SiGe Technology , 2009, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[42]  Yo-Sheng Lin,et al.  Wideband mixed lumped-distributed-element 90° and 180° power splitters on silicon substrate for millimeter-wave applications , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[43]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[44]  Liang-Hung Lu,et al.  A 24-GHz Receiver Frontend With an LO Signal Generator in 0.18-$\mu$m CMOS , 2008, IEEE Transactions on Microwave Theory and Techniques.

[45]  Doris Schmitt-Landsiedel,et al.  A Complementary Switched MOSFET Architecture for the 1/f Noise Reduction in Linear Analog CMOS ICs , 2007, IEEE Journal of Solid-State Circuits.

[46]  Calvin Plett,et al.  Integrated Circuit Design for High-Speed Frequency Synthesis , 2006 .

[47]  J. Harris,et al.  TLP measurements for verification of ESD protection device response , 2000 .

[48]  B. Razavi,et al.  Broadband ESD protection circuits in CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[49]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[50]  B. Kleveland,et al.  Distributed ESD protection for high-speed integrated circuits , 2000, IEEE Electron Device Letters.

[51]  H. Gossner,et al.  Reliability aspects of gate oxide under ESD pulse stress , 2007 .

[52]  S. Maas A GaAs MESFET Mixer with Very Low Intermodulation , 1987 .

[53]  Albert Wang On-Chip Esd Protection for Integrated Circuits: An IC Design Perspective , 2002 .

[54]  H.-Y. Chang,et al.  A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-/spl mu/m CMOS technology , 2006, IEEE Microwave and Wireless Components Letters.

[55]  T. Nakamura,et al.  24-GHz 1-V pseudo-stacked mixer with gain-boosting technique , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[56]  J. L. Showell,et al.  A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design , 1997 .

[57]  M. Hossain,et al.  Performance of a low voltage highly linear 24 GHz down conversion mixer in 0.18-/spl mu/m CMOS , 2006, Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[58]  Harald Gossner ESD protection for the deep sub micron regime - a challenge for design methodology , 2004, 17th International Conference on VLSI Design. Proceedings..

[59]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[60]  Tero Koivisto,et al.  Comparison of active and passive mixers , 2007, 2007 18th European Conference on Circuit Theory and Design.

[62]  Marc Tiebout,et al.  A 2kV ESD-Protected 18GHz LNA with 4dB NF in 0.13μm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[63]  J. Laskar,et al.  Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[64]  Adel Abdel Moneim Mohamed Saleh Theory of Resistive Mixers , 1971 .

[65]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.

[66]  K. O. Kenneth,et al.  W-Band Active Down-Conversion Mixer in Bulk CMOS , 2009, IEEE Microwave and Wireless Components Letters.

[67]  Gabriel M. Rebeiz,et al.  A 24 GHz 4-channel phased-array receiver in 0.13 μm CMOS , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[68]  S.T. Nicolson,et al.  Methodology for Simultaneous Noise and Impedance Matching in W-Band LNAs , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[69]  Guofu Niu,et al.  Noise in SiGe HBT RF Technology: Physics, Modeling, and Circuit Implications , 2005, Proceedings of the IEEE.

[70]  H. Massler,et al.  Coplanar integrated mixers for 77-GHz automotive applications , 1998, IEEE Microwave and Guided Wave Letters.

[71]  P. Garcia,et al.  Low Noise Low Cost Rx Solutions for Pulsed 24GHz Automotive Radar Sensors , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[72]  J. Chiu,et al.  A noise cancellation technique in active RF-CMOS mixers , 2005, IEEE Journal of Solid-State Circuits.

[73]  K. Aufinger,et al.  A low-noise amplifier at 77 GHz in SiGe:C bipolar technology , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[74]  L. Roselli,et al.  A cost driven 24GHz Doppler radar sensor development for automotive applications , 2005, 2005 European Microwave Conference.

[75]  H. Veenstra,et al.  60GHz quadrature signal generation with a single phase VCO and polyphase filter in a 0.25μm SiGe BiCMOS technology , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[76]  J. Lin,et al.  1-11 GHz ultra-wideband resistive ring mixer in 0.18-/spl mu/m CMOS technology , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[77]  S. Sankaran,et al.  Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 μm CMOS , 2005 .