A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries

A new functional-gradient-structured solid polymer electrolyte was obtained, synergistically achieving high modulus for dendrite-suppression and good interface contact for the increase of cell cyclability in solid-state lithium metal batteries.

[1]  Xiaoting Lin,et al.  Solid‐State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide‐Based All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Functional Materials.

[2]  Qiang Zhang,et al.  Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes , 2018, Energy Storage Materials.

[3]  T. Mallouk,et al.  Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. , 2018, Angewandte Chemie.

[4]  Yunhui Gong,et al.  Mixed ionic-electronic conductor enabled effective cathode-electrolyte interface in all solid state batteries , 2018, Nano Energy.

[5]  Jie Xiao,et al.  The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries , 2018 .

[6]  Yayuan Liu,et al.  A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus , 2018, Advanced materials.

[7]  Jinqiu Zhou,et al.  Use of Tween Polymer To Enhance the Compatibility of the Li/Electrolyte Interface for the High-Performance and High-Safety Quasi-Solid-State Lithium-Sulfur Battery. , 2018, Nano letters.

[8]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[9]  Xi Chen,et al.  Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. , 2018, Journal of the American Chemical Society.

[10]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[11]  Wenwen Xu,et al.  Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates , 2018 .

[12]  Kyeongjae Cho,et al.  2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries , 2018, Nature Nanotechnology.

[13]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[14]  Yi-Chun Jin,et al.  Recent progresses in the suppression method based on the growth mechanism of lithium dendrite , 2017 .

[15]  Christopher Y. Li,et al.  Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte‐Based Lithium Metal Batteries , 2017 .

[16]  Shuru Chen,et al.  Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries , 2017, Nature Communications.

[17]  Yunhui Gong,et al.  In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. , 2017, Journal of the American Chemical Society.

[18]  Jinqiu Zhou,et al.  Selenium‐Doped Cathodes for Lithium–Organosulfur Batteries with Greatly Improved Volumetric Capacity and Coulombic Efficiency , 2017, Advanced materials.

[19]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[20]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[21]  Yayuan Liu,et al.  Solid-State Lithium-Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. , 2017, Nano letters.

[22]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[23]  Jian-jun Zhang,et al.  In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries , 2016, Advanced science.

[24]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[25]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[26]  Jian-jun Zhang,et al.  A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries , 2016 .

[27]  Z. Wen,et al.  A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. , 2016, Chemical communications.

[28]  Shiguo Zhang,et al.  Recent Advances in Electrolytes for Lithium–Sulfur Batteries , 2015 .

[29]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[30]  M. Fowler,et al.  Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities , 2014 .

[31]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[32]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[33]  E. Quartarone,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[34]  B. Kieback,et al.  Processing techniques for functionally graded materials , 2003 .

[35]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[36]  T. Abe,et al.  Functionally gradient polymer electrolyte prepared by plasma polymerization , 1999 .

[37]  Gang Bao,et al.  Multiple cracking in functionally graded ceramic/metal coatings , 1995 .

[38]  B. H. Rabin,et al.  Functionally Gradient Materials , 1995 .

[39]  S. Inagi Fabrication of gradient polymer surfaces using bipolar electrochemistry , 2016 .