The effects of quantum hardware properties on the performances of variational quantum learning algorithms

[1]  F. Gargiulo,et al.  Best practices for portfolio optimization by quantum computing, experimented on real quantum devices , 2023, Scientific reports.

[2]  Y. M. Rhee,et al.  Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers , 2022, npj Quantum Information.

[3]  Patrick J. Coles,et al.  Challenges and opportunities in quantum machine learning , 2022, Nature Computational Science.

[4]  T. Miki,et al.  Variational Ansatz preparation to avoid CNOT-gates on noisy quantum devices for combinatorial optimizations , 2022, AIP Advances.

[5]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[6]  M. Motta,et al.  Emerging quantum computing algorithms for quantum chemistry , 2021, WIREs Computational Molecular Science.

[7]  Cedric Yen-Yu Lin,et al.  General parameter-shift rules for quantum gradients , 2021, Quantum.

[8]  Patrick J. Coles Seeking quantum advantage for neural networks , 2021, Nature Computational Science.

[9]  Giovanni Acampora,et al.  Deep neural networks for quantum circuit mapping , 2021, Neural Computing and Applications.

[10]  C. Gogolin,et al.  Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems , 2021, New Journal of Physics.

[11]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[12]  Chang-Yu Hsieh,et al.  Neural predictor based quantum architecture search , 2021, Mach. Learn. Sci. Technol..

[13]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[14]  M. Cerezo,et al.  Effect of barren plateaus on gradient-free optimization , 2020, Quantum.

[15]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[16]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[17]  P. Barkoutsos,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[18]  G. Pryde,et al.  Photonic quantum information processing: A concise review , 2019, Applied Physics Reviews.

[19]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[20]  Fred W. Glover,et al.  Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models , 2018, 4OR.

[21]  Guang-Can Guo,et al.  Quantum Neural Network States: A Brief Review of Methods and Applications , 2018, Advanced Quantum Technologies.

[22]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[23]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[24]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[25]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[26]  S. Lloyd,et al.  Quantum machine learning , 2016, Nature.

[27]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[28]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[29]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[30]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[31]  Sun Xiao-ling,et al.  A branch-and-bound algorithm for discrete multi-factor portfolio optimization model , 2008 .

[32]  Harry Markowitz,et al.  Portfolio Selection , 1971 .