Latent subject-centered modeling of collaborative tagging

Collaborative tagging or social bookmarking is a main component of Web 2.0 systems and has been widely recognized as one of the key technologies underpinning next-generation knowledge management platforms. In this article, we propose a subject-centered model of collaborative tagging to account for the ternary cooccurrences involving users, items, and tags in such systems. Extending the well-established probabilistic latent semantic analysis theory for knowledge representation, our model maps the user, item, and tag entities into a common latent subject space that captures the “wisdom of the crowd” resulted from the collaborative tagging process. To put this model into action, we have developed a novel way to estimate the probabilistic subject-centered model approximately in a highly efficient manner taking advantage of a matrix factorization method. Our empirical evaluation shows that our proposed approach delivers substantial performance improvement on the knowledge resource recommendation task over the state-of-the-art standard and tag-aware resource recommendation algorithms.

[1]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[2]  Daniel Dajun Zeng,et al.  Why Does Collaborative Filtering Work? Transaction-Based Recommendation Model Validation and Selection by Analyzing Bipartite Random Graphs , 2011, INFORMS J. Comput..

[3]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[4]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[5]  Luo Si,et al.  A study of mixture models for collaborative filtering , 2006, Information Retrieval.

[6]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[7]  Victor Lavrenko,et al.  Predicting social-tags for cold start book recommendations , 2009, RecSys '09.

[8]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[9]  Jennifer Trant,et al.  Studying Social Tagging and Folksonomy: A Review and Framework , 2009, J. Digit. Inf..

[10]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[11]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[12]  Yi-Cheng Zhang,et al.  Personalized Recommendation via Integrated Diffusion on User-Item-Tag Tripartite Graphs , 2009, ArXiv.

[13]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[14]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[15]  Hsinchun Chen,et al.  A graph model for E-commerce recommender systems , 2004, J. Assoc. Inf. Sci. Technol..

[16]  Lars Schmidt-Thieme,et al.  Guest Editors' Introduction: Recommender Systems , 2007, IEEE Intell. Syst..

[17]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[18]  Dean P. Foster,et al.  A Formal Statistical Approach to Collaborative Filtering , 1998 .

[19]  Daniel Zeng,et al.  How Useful Are Tags? - An Empirical Analysis of Collaborative Tagging for Web Page Recommendation , 2008, ISI Workshops.

[20]  Marcus Fontoura,et al.  Using annotations in enterprise search , 2006, WWW '06.

[21]  Bernardo A. Huberman,et al.  The Structure of Collaborative Tagging Systems , 2005, ArXiv.

[22]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[23]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[24]  Lars Schmidt-Thieme,et al.  Learning optimal ranking with tensor factorization for tag recommendation , 2009, KDD.

[25]  Zheng Chen,et al.  Search result re-ranking based on gap between search queries and social tags , 2009, WWW '09.

[26]  Peter Brusilovsky,et al.  Collaborative filtering for social tagging systems: an experiment with CiteULike , 2009, RecSys '09.

[27]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[28]  Gilad Mishne,et al.  AutoTag: a collaborative approach to automated tag assignment for weblog posts , 2006, WWW '06.

[29]  Andreas Hotho,et al.  Tag recommendations in social bookmarking systems , 2008, AI Commun..

[30]  Daniel Dajun Zeng,et al.  Collaborative filtering in social tagging systems based on joint item-tag recommendations , 2010, CIKM.

[31]  Vittorio Loreto,et al.  Collective dynamics of social annotation , 2009, Proceedings of the National Academy of Sciences.

[32]  Jamie Callan,et al.  The Halo Effect in Multi-component Ratings and its Implications for Recommender Systems : The Case of Yahoo ! Movies , 2010 .

[33]  Yong Yu,et al.  Exploring social annotations for the semantic web , 2006, WWW '06.

[34]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[35]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[36]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[37]  Ramayya Krishnan,et al.  Research Note - The Halo Effect in Multicomponent Ratings and Its Implications for Recommender Systems: The Case of Yahoo! Movies , 2012, Inf. Syst. Res..

[38]  Wu-Jun Li,et al.  TagiCoFi: tag informed collaborative filtering , 2009, RecSys '09.

[39]  John Riedl,et al.  Tagommenders: connecting users to items through tags , 2009, WWW '09.

[40]  Ingmar Weber,et al.  Personalized, interactive tag recommendation for flickr , 2008, RecSys '08.

[41]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender System - A Case Study , 2000 .

[42]  Lars Schmidt-Thieme,et al.  Tag-aware recommender systems by fusion of collaborative filtering algorithms , 2008, SAC '08.

[43]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[44]  Valentin Robu,et al.  The complex dynamics of collaborative tagging , 2007, WWW '07.

[45]  Arkaitz Zubiaga,et al.  Getting the most out of social annotations for web page classification , 2009, DocEng '09.

[46]  Joseph A. Konstan,et al.  Introduction to recommender systems: Algorithms and Evaluation , 2004, TOIS.

[47]  Nan Du,et al.  Improved recommendation based on collaborative tagging behaviors , 2008, IUI '08.

[48]  Bing He,et al.  Community-based topic modeling for social tagging , 2010, CIKM.

[49]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[50]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[51]  Takeshi Yamada,et al.  Topigraphy: visualization for large-scale tag clouds , 2008, WWW.

[52]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[53]  Rui Li,et al.  Exploring social tagging graph for web object classification , 2009, KDD.

[54]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[55]  Panagiotis Symeonidis,et al.  A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis , 2010, IEEE Transactions on Knowledge and Data Engineering.

[56]  Yang Song,et al.  Automatic tag recommendation algorithms for social recommender systems , 2011, ACM Trans. Web.

[57]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[58]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[59]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[60]  Xin Chen,et al.  Exploit the tripartite network of social tagging for web clustering , 2009, CIKM.

[61]  Daniel Dajun Zeng,et al.  Topic-based web page recommendation using tags , 2009, 2009 IEEE International Conference on Intelligence and Security Informatics.

[62]  Marcel Ausloos,et al.  Contextualising tags in collaborative tagging systems , 2009, HT '09.