Modelling the rejection of nanofiltration membranes using zeta potential measurements
暂无分享,去创建一个
[1] R. Gimbel,et al. Removal of pesticides and other micropollutants by nanofiltration , 1997 .
[2] Anthony G. Fane,et al. Quantitative microscopic study of surface characteristics of ultrafiltration membranes , 1990 .
[3] R. J. Hunter,et al. Zeta Potential in Colloid Science , 1981 .
[4] J. A. Quinn,et al. Restricted transport in small pores. A model for steric exclusion and hindered particle motion. , 1974, Biophysical journal.
[5] P. Schirg,et al. CHARACTERISATION OF NANOFILTRATION MEMBRANES FOR THE SEPARATION OF AQUEOUS DYE-SALT SOLUTIONS , 1992 .
[6] Nidal Hilal,et al. CHARACTERISATION OF NANOFILTRATION MEMBRANES FOR PREDICTIVE PURPOSES - USE OF SALTS, UNCHARGED SOLUTES AND ATOMIC FORCE MICROSCOPY , 1997 .
[7] Howard Brenner,et al. The motion of a closely-fitting sphere in a fluid-filled tube , 1973 .
[8] S. Nakao,et al. Negative rejection of anions in the loose reverse osmosis separation of mono- and divalent ion mixtures , 1991 .
[9] W. Richard Bowen,et al. Characterisation and prediction of separation performance of nanofiltration membranes , 1996 .
[10] Menachem Elimelech,et al. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes , 1996 .
[11] P. Berg,et al. 139. Modellierung der Rückhaltung anorganischer Wasserinhaltsstoffe durch Nanofiltrationsmembranen mit Hilfe der erweiterten Nernst‐Planck‐Gleichung , 1994 .
[12] M. Vonk,et al. Positive and negative ion retention curves of mixed electrolytes in reverse osmosis with a cellulose acetate membrane. An analysis on the basis of the generalized Nernst—Planck equation , 1983 .
[13] T. Robbertsen,et al. Transport of lactic acid through reverse osmosis and nanofiltration membranes , 1993 .
[14] A. Yaroshchuk,et al. Phenomenological theory of pressure-driven transport of ternary electrolyte solutions with a common coin and its specification for capillary space—charge model , 1994 .
[15] C. Vandecasteele,et al. Influence of ion size and charge in nanofiltration , 1998 .
[16] Shoji Kimura,et al. Reverse Osmosis of Single and Mixed Electrolytes with Charged Membranes: Experiment and Analysis , 1991 .
[17] C. Guizard,et al. Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane , 1997 .
[18] W. Pusch,et al. Ion Exchange Capacity of Cellulose Acetate Membranes , 1976 .
[19] Shoji Kimura,et al. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer- Sievers model , 1995 .
[20] D. Comstock. Desal-5 membrane for water softening , 1989 .
[21] Shoji Kimura,et al. Calculation of ion rejection by extended nernst-planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions , 1991 .
[22] F. A. Morrison,et al. Electrokinetic Energy Conversion in Ultrafine Capillaries , 1965 .
[23] L. Dresner. Some remarks on the integration of the extended Nernst-Planck equations in the hyperfiltration of multicomponent solutions , 1972 .
[24] K. Meyer,et al. La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .
[25] William J. Conlon,et al. Membrane Softening: A Treatment Process Comes of Age , 1989 .
[26] Menachem Elimelech,et al. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer , 1994 .
[27] M. Nyström,et al. Fouling and retention of nanofiltration membranes , 1995 .