The DESI One-Percent Survey: Constructing Galaxy–Halo Connections for ELGs and LRGs Using Auto and Cross Correlations

In the current Dark Energy Spectroscopic Instrument (DESI) survey, emission line galaxies (ELGs) and luminous red galaxies (LRGs) are essential for mapping the dark matter distribution at NM . We measure the auto and cross correlation functions of ELGs and LRGs at 108.0 M ⊙ from the DESI One-Percent survey. Following Gao et al., we construct the galaxy–halo connections for ELGs and LRGs simultaneously. With the stellar–halo mass relation for the whole galaxy population (i.e., normal galaxies), LRGs can be selected directly by stellar mass, while ELGs can also be selected randomly based on the observed number density of each stellar mass, once the probability z ∼ 0.2 of a satellite galaxy becoming an ELG is determined. We demonstrate that the observed small scale clustering prefers a halo mass-dependent z ∼ 0.2 model rather than a constant. With this model, we can well reproduce the auto correlations of LRGs and the cross correlations between LRGs and ELGs at z ∼ 0.7 z ∼ 1. We can also reproduce the auto correlations of ELGs at deg2 z ∼ 1 (0.6 < z < 1.6 z ∼ 1) in real (redshift) space. Although our model has only seven parameters, we show that it can be extended to higher redshifts and reproduces the observed auto correlations of ELGs in the whole range of ∼1012 M ⊙, which enables us to generate a lightcone ELG mock for DESI. With the above model, we further derive halo occupation distributions for ELGs, which can be used to produce ELG mocks in coarse simulations without resolving subhalos.

[1]  K. Xu,et al.  Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. IV. High-precision Constraints on the Evolution of the Stellar–Halo Mass Relation at Redshift z < 0.7 , 2022, The Astrophysical Journal.

[2]  Ana Maria Delgado,et al.  The MillenniumTNG Project: Refining the one-halo model of red and blue galaxies at different redshifts , 2022, 2210.10068.

[3]  Ana Maria Delgado,et al.  The MillenniumTNG Project: An improved two-halo model for the galaxy-halo connection of red and blue galaxies , 2022, 2210.10072.

[4]  M. Blanton,et al.  Abundance matching analysis of the emission line galaxy sample in the extended Baryon Oscillation Spectroscopic Survey , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  Sergey E. Koposov,et al.  The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[6]  M. A. Strauss,et al.  Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase , 2022, Astronomical Telescopes + Instrumentation.

[7]  A. Myers,et al.  Target Selection and Validation of DESI Emission Line Galaxies , 2022, The Astronomical Journal.

[8]  Sergey E. Koposov,et al.  Overview of the DESI Milky Way Survey , 2022, The Astrophysical Journal.

[9]  A. Myers,et al.  The DESI Survey Validation: Results from Visual Inspection of Bright Galaxies, Luminous Red Galaxies, and Emission-line Galaxies , 2022, The Astrophysical Journal.

[10]  A. Myers,et al.  The DESI Survey Validation: Results from Visual Inspection of the Quasar Survey Spectra , 2022, The Astronomical Journal.

[11]  A. Myers,et al.  Target Selection and Validation of DESI Luminous Red Galaxies , 2022, The Astronomical Journal.

[12]  Sergey E. Koposov,et al.  The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[13]  A. Myers,et al.  The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation , 2022, The Astronomical Journal.

[14]  A. Myers,et al.  Target Selection and Validation of DESI Quasars , 2022, The Astrophysical Journal.

[15]  K. Xu,et al.  Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. III. Accurate Measurement of Galaxy Stellar Mass Function with the Aid of Cosmological Redshift Surveys , 2022, The Astrophysical Journal.

[16]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[17]  Sergey E. Koposov,et al.  Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[18]  W. Percival,et al.  The Robotic Multiobject Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI) , 2022, The Astronomical Journal.

[19]  J. Kneib,et al.  Model BOSS & eBOSS Luminous Red Galaxies at 0.2 < z < 1.0 using SubHalo Abundance Matching with 3 parameters , 2022, Monthly Notices of the Royal Astronomical Society.

[20]  D. Eisenstein,et al.  Illustrating galaxy-halo connection in the DESI era with IllustrisTNG , 2022, 2202.12911.

[21]  Y. Jing,et al.  Massive Star-Forming Galaxies Have Converted Most of Their Halo Gas into Stars , 2021, 2112.04777.

[22]  Y. Jing,et al.  Constructing the Emission-line Galaxy–Host Halo Connection through Auto and Cross Correlations , 2021, The Astrophysical Journal.

[23]  D. Eisenstein,et al.  AbacusHOD: A highly efficient extended multi-tracer HOD framework and its application to BOSS and eBOSS data , 2021, 2110.11412.

[24]  Y. Jing,et al.  Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. II. Morphology, Color, and Size Dependences of the Stellar–Halo Mass Relation for Massive Galaxies , 2021, The Astrophysical Journal.

[25]  Y. Jing,et al.  Photometric Objects around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. I. Methods , 2021, The Astrophysical Journal.

[26]  D. Eisenstein,et al.  AbacusSummit: A Massive Set of High-Accuracy, High-Resolution N-Body Simulations , 2021, Monthly Notices of the Royal Astronomical Society.

[27]  Y. Jing,et al.  Strong Conformity and Assembly Bias: Towards a Physical Understanding of the Galaxy-Halo Connection in SDSS Clusters , 2021, 2108.06790.

[28]  S. More,et al.  The Stellar Mass in and around Isolated Central Galaxies: Connections to the Total Mass Distribution through Galaxy–Galaxy Lensing in the Hyper Suprime-Cam Survey , 2021, The Astrophysical Journal.

[29]  Zhongxu Zhai,et al.  Linear bias and halo occupation distribution of emission-line galaxies from Nancy Grace Roman Space Telescope , 2021, Monthly Notices of the Royal Astronomical Society.

[30]  Yen-Ting Lin,et al.  Angular clustering and host halo properties of [O ii] emitters at z > 1 in the Subaru HSC survey , 2020, Publications of the Astronomical Society of Japan.

[31]  D. Eisenstein,et al.  The galaxy–halo connection of emission-line galaxies in IllustrisTNG , 2020, 2011.05331.

[32]  Cea,et al.  Preliminary Target Selection for the DESI Milky Way Survey (MWS) , 2020, Research Notes of the AAS.

[33]  A. Myers,et al.  Preliminary Target Selection for the DESI Luminous Red Galaxy (LRG) Sample , 2020, Research Notes of the AAS.

[34]  A. Myers,et al.  Preliminary Target Selection for the DESI Bright Galaxy Survey (BGS) , 2020, Research Notes of the AAS.

[35]  A. Myers,et al.  Preliminary Target Selection for the DESI Quasar (QSO) Sample , 2020, Research Notes of the AAS.

[36]  A. Myers,et al.  Preliminary Target Selection for the DESI Emission Line Galaxy (ELG) Sample , 2020, Research Notes of the AAS.

[37]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly: luminosity and stellar mass functions in GAMA groups , 2020, Monthly Notices of the Royal Astronomical Society.

[38]  L. Hernquist,et al.  Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing , 2020, 2008.00005.

[39]  B. Altieri,et al.  The Uchuu simulations: Data Release 1 and dark matter halo concentrations , 2020, 2007.14720.

[40]  D. Schneider,et al.  The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies , 2020, 2007.09012.

[41]  J. Brinkmann,et al.  The completed SDSS-IV extended baryon oscillation spectroscopic survey: pairwise-inverse probability and angular correction for fibre collisions in clustering measurements , 2020, 2007.09005.

[42]  Kun Xu,et al.  Star Formation in Massive Galaxies at Redshift z ∼ 0.5 , 2020, The Astrophysical Journal.

[43]  C. Baugh,et al.  Do model emission line galaxies live in filaments at z ∼ 1? , 2020, 2001.06560.

[44]  L. Garrison,et al.  corrfunc – a suite of blazing fast correlation functions on the CPU , 2019, Monthly Notices of the Royal Astronomical Society.

[45]  J. Peacock,et al.  Multitracer extension of the halo model: probing quenching and conformity in eBOSS , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  Hong Guo,et al.  Accurate Modeling of the Projected Galaxy Clustering in Photometric Surveys. I. Tests with Mock Catalogs , 2019, The Astrophysical Journal.

[47]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[48]  C. Giocoli,et al.  UNIT project: Universe N-body simulations for the Investigation of Theoretical models from galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  D. Schneider,et al.  Evolution of Star-forming Galaxies from z = 0.7 to 1.2 with eBOSS Emission-line Galaxies , 2018, The Astrophysical Journal.

[50]  Y. Jing CosmicGrowth Simulations—Cosmological simulations for structure growth studies , 2018, Science China Physics, Mechanics & Astronomy.

[51]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[53]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[54]  Hong Guo,et al.  The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 < Z < 0.8 from BOSS Observations , 2018, 1804.01993.

[55]  D. Eisenstein,et al.  Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models , 2018, 1802.10115.

[56]  Hong Guo,et al.  The conditional colour–magnitude distribution – I. A comprehensive model of the colour–magnitude–halo mass distribution of present-day galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[57]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[58]  A. Berlind,et al.  Small- and large-scale galactic conformity in SDSS DR7 , 2017, Monthly Notices of the Royal Astronomical Society.

[59]  Rachel Mandelbaum,et al.  Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.

[60]  Durham,et al.  The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 , 2017, 1708.07628.

[61]  S. Cole,et al.  HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations. , 2017, 1708.03646.

[62]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours , 2017, 1703.09219.

[63]  Xiaohui Fan,et al.  Project Overview of the Beijing–Arizona Sky Survey , 2017, 1702.03653.

[64]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.

[65]  J. Comparat,et al.  Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe , 2016, 1611.05457.

[66]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[67]  Hong Guo,et al.  On the clustering of faint red galaxies , 2015, 1510.00393.

[68]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes – II. Halo mass is the main driver of galaxy quenching , 2015, 1509.06758.

[69]  A. Bolton,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.

[70]  S. Cole,et al.  A unified model for the spatial and mass distribution of subhaloes , 2015, 1509.02175.

[71]  J. Comparat,et al.  Modelling galaxy clustering: halo occupation distribution versus subhalo matching. , 2015, Monthly notices of the Royal Astronomical Society.

[72]  W. M. Wood-Vasey,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.

[73]  D. Schneider,et al.  Clustering properties of g-selected galaxies at z similar to 0.8 , 2015, 1507.04356.

[74]  J. Schaye,et al.  Subhalo abundance matching and assembly bias in the EAGLE simulation , 2015, 1507.01948.

[75]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7 , 2015, 1505.02781.

[76]  K. Dawson,et al.  Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.

[77]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[78]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[79]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) A precise measurement of the galaxy stellar mass function and the abundance of massive galaxies at redshifts 0.5 , 2013, 1303.3808.

[80]  S. White,et al.  Numerical resolution limits on subhalo abundance matching , 2013, 1303.3586.

[81]  R. Nichol,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.

[82]  C. Baugh,et al.  How robust are predictions of galaxy clustering , 2013, 1301.3497.

[83]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[84]  A. Ealet,et al.  Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure , 2012, 1207.4321.

[85]  C. Baugh,et al.  The clustering of Hα emitters at z = 2.23 from HiZELS , 2012 .

[86]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[87]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[88]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[89]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[90]  S. White,et al.  The Phoenix Project: the dark side of rich galaxy clusters , 2012, 1201.1940.

[91]  Jiaxin Han,et al.  Resolving subhaloes’ lives with the Hierarchical Bound‐Tracing algorithm , 2011, 1103.2099.

[92]  R. Davé,et al.  Testing subhalo abundance matching in cosmological smoothed particle hydrodynamics simulations , 2010, 1011.4964.

[93]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[94]  Y. Jing,et al.  Modelling galaxy stellar mass evolution from z ∼ 0.8 to today , 2009, 0911.1864.

[95]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[96]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[97]  Heidelberg,et al.  The population of dark matter subhaloes: mass functions and average mass-loss rates , 2007, 0712.1563.

[98]  Cheng Li,et al.  A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering , 2007, 0707.2628.

[99]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[100]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[101]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[102]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[103]  G. Kauffmann,et al.  Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.

[104]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[105]  Princeton University.,et al.  The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.

[106]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[107]  A. Cooray Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics , 2005, astro-ph/0509033.

[108]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[109]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[110]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[111]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[112]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[113]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[114]  Y. Jing,et al.  Spatial and Dynamical Biases in Velocity Statistics of Galaxies , 2003, astro-ph/0303053.

[115]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[116]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[117]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[118]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[119]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[120]  Chung-Pei Ma,et al.  Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions , 2000, astro-ph/0003343.

[121]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[122]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[123]  R. Wechsler,et al.  Implications of Spikes in the Redshift Distribution of z ~ 3 Galaxies , 1998 .

[124]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[125]  Y. Jing,et al.  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[126]  A. Szalay,et al.  A New Class of Estimators for the N-Point Correlations , 1997, astro-ph/9704241.

[127]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[128]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[129]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[130]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[131]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[132]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[133]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .