The DESI One-Percent Survey: Constructing Galaxy–Halo Connections for ELGs and LRGs Using Auto and Cross Correlations
暂无分享,去创建一个
W. Percival | K. Dawson | K. Honscheid | M. Manera | J. Newman | G. Rossi | H. Seo | B. Weaver | J. Moustakas | P. Doel | R. Miquel | M. Schubnell | Kun Xu | S. Ahlen | J. Aguilar | T. Claybaugh | J. Forero-Romero | M. Landriau | A. Meisner | J. Nie | Y. Jing | Shanquan Gui | J. Guy | D. Brooks | Yun-Liang Zheng | A. Macorra | Zhi-min Zhou | D. Zhao | R. Kehoe | K. Fanning | Hongyu Gao | S. Gontcho | Jiaxi Yu | G. Tarl'e
[1] K. Xu,et al. Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. IV. High-precision Constraints on the Evolution of the Stellar–Halo Mass Relation at Redshift z < 0.7 , 2022, The Astrophysical Journal.
[2] Ana Maria Delgado,et al. The MillenniumTNG Project: Refining the one-halo model of red and blue galaxies at different redshifts , 2022, 2210.10068.
[3] Ana Maria Delgado,et al. The MillenniumTNG Project: An improved two-halo model for the galaxy-halo connection of red and blue galaxies , 2022, 2210.10072.
[4] M. Blanton,et al. Abundance matching analysis of the emission line galaxy sample in the extended Baryon Oscillation Spectroscopic Survey , 2022, Monthly Notices of the Royal Astronomical Society.
[5] Sergey E. Koposov,et al. The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.
[6] M. A. Strauss,et al. Prime Focus Spectrograph (PFS) for the Subaru Telescope: its start of the last development phase , 2022, Astronomical Telescopes + Instrumentation.
[7] A. Myers,et al. Target Selection and Validation of DESI Emission Line Galaxies , 2022, The Astronomical Journal.
[8] Sergey E. Koposov,et al. Overview of the DESI Milky Way Survey , 2022, The Astrophysical Journal.
[9] A. Myers,et al. The DESI Survey Validation: Results from Visual Inspection of Bright Galaxies, Luminous Red Galaxies, and Emission-line Galaxies , 2022, The Astrophysical Journal.
[10] A. Myers,et al. The DESI Survey Validation: Results from Visual Inspection of the Quasar Survey Spectra , 2022, The Astronomical Journal.
[11] A. Myers,et al. Target Selection and Validation of DESI Luminous Red Galaxies , 2022, The Astronomical Journal.
[12] Sergey E. Koposov,et al. The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.
[13] A. Myers,et al. The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation , 2022, The Astronomical Journal.
[14] A. Myers,et al. Target Selection and Validation of DESI Quasars , 2022, The Astrophysical Journal.
[15] K. Xu,et al. Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. III. Accurate Measurement of Galaxy Stellar Mass Function with the Aid of Cosmological Redshift Surveys , 2022, The Astrophysical Journal.
[16] Miguel de Val-Borro,et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.
[17] Sergey E. Koposov,et al. Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.
[18] W. Percival,et al. The Robotic Multiobject Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI) , 2022, The Astronomical Journal.
[19] J. Kneib,et al. Model BOSS & eBOSS Luminous Red Galaxies at 0.2 < z < 1.0 using SubHalo Abundance Matching with 3 parameters , 2022, Monthly Notices of the Royal Astronomical Society.
[20] D. Eisenstein,et al. Illustrating galaxy-halo connection in the DESI era with IllustrisTNG , 2022, 2202.12911.
[21] Y. Jing,et al. Massive Star-Forming Galaxies Have Converted Most of Their Halo Gas into Stars , 2021, 2112.04777.
[22] Y. Jing,et al. Constructing the Emission-line Galaxy–Host Halo Connection through Auto and Cross Correlations , 2021, The Astrophysical Journal.
[23] D. Eisenstein,et al. AbacusHOD: A highly efficient extended multi-tracer HOD framework and its application to BOSS and eBOSS data , 2021, 2110.11412.
[24] Y. Jing,et al. Photometric Objects Around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. II. Morphology, Color, and Size Dependences of the Stellar–Halo Mass Relation for Massive Galaxies , 2021, The Astrophysical Journal.
[25] Y. Jing,et al. Photometric Objects around Cosmic Webs (PAC) Delineated in a Spectroscopic Survey. I. Methods , 2021, The Astrophysical Journal.
[26] D. Eisenstein,et al. AbacusSummit: A Massive Set of High-Accuracy, High-Resolution N-Body Simulations , 2021, Monthly Notices of the Royal Astronomical Society.
[27] Y. Jing,et al. Strong Conformity and Assembly Bias: Towards a Physical Understanding of the Galaxy-Halo Connection in SDSS Clusters , 2021, 2108.06790.
[28] S. More,et al. The Stellar Mass in and around Isolated Central Galaxies: Connections to the Total Mass Distribution through Galaxy–Galaxy Lensing in the Hyper Suprime-Cam Survey , 2021, The Astrophysical Journal.
[29] Zhongxu Zhai,et al. Linear bias and halo occupation distribution of emission-line galaxies from Nancy Grace Roman Space Telescope , 2021, Monthly Notices of the Royal Astronomical Society.
[30] Yen-Ting Lin,et al. Angular clustering and host halo properties of [O ii] emitters at z > 1 in the Subaru HSC survey , 2020, Publications of the Astronomical Society of Japan.
[31] D. Eisenstein,et al. The galaxy–halo connection of emission-line galaxies in IllustrisTNG , 2020, 2011.05331.
[32] Cea,et al. Preliminary Target Selection for the DESI Milky Way Survey (MWS) , 2020, Research Notes of the AAS.
[33] A. Myers,et al. Preliminary Target Selection for the DESI Luminous Red Galaxy (LRG) Sample , 2020, Research Notes of the AAS.
[34] A. Myers,et al. Preliminary Target Selection for the DESI Bright Galaxy Survey (BGS) , 2020, Research Notes of the AAS.
[35] A. Myers,et al. Preliminary Target Selection for the DESI Quasar (QSO) Sample , 2020, Research Notes of the AAS.
[36] A. Myers,et al. Preliminary Target Selection for the DESI Emission Line Galaxy (ELG) Sample , 2020, Research Notes of the AAS.
[37] J. A. Vázquez-Mata,et al. Galaxy and mass assembly: luminosity and stellar mass functions in GAMA groups , 2020, Monthly Notices of the Royal Astronomical Society.
[38] L. Hernquist,et al. Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing , 2020, 2008.00005.
[39] B. Altieri,et al. The Uchuu simulations: Data Release 1 and dark matter halo concentrations , 2020, 2007.14720.
[40] D. Schneider,et al. The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies , 2020, 2007.09012.
[41] J. Brinkmann,et al. The completed SDSS-IV extended baryon oscillation spectroscopic survey: pairwise-inverse probability and angular correction for fibre collisions in clustering measurements , 2020, 2007.09005.
[42] Kun Xu,et al. Star Formation in Massive Galaxies at Redshift z ∼ 0.5 , 2020, The Astrophysical Journal.
[43] C. Baugh,et al. Do model emission line galaxies live in filaments at z ∼ 1? , 2020, 2001.06560.
[44] L. Garrison,et al. corrfunc – a suite of blazing fast correlation functions on the CPU , 2019, Monthly Notices of the Royal Astronomical Society.
[45] J. Peacock,et al. Multitracer extension of the halo model: probing quenching and conformity in eBOSS , 2019, Monthly Notices of the Royal Astronomical Society.
[46] Hong Guo,et al. Accurate Modeling of the Projected Galaxy Clustering in Photometric Surveys. I. Tests with Mock Catalogs , 2019, The Astrophysical Journal.
[47] D. Corre,et al. CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.
[48] C. Giocoli,et al. UNIT project: Universe N-body simulations for the Investigation of Theoretical models from galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.
[49] D. Schneider,et al. Evolution of Star-forming Galaxies from z = 0.7 to 1.2 with eBOSS Emission-line Galaxies , 2018, The Astrophysical Journal.
[50] Y. Jing. CosmicGrowth Simulations—Cosmological simulations for structure growth studies , 2018, Science China Physics, Mechanics & Astronomy.
[51] Andrew P. Hearin,et al. UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.
[52] Adam D. Myers,et al. Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.
[53] J. Tinker,et al. The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.
[54] Hong Guo,et al. The Incomplete Conditional Stellar Mass Function: Unveiling the Stellar Mass Functions of Galaxies at 0.1 < Z < 0.8 from BOSS Observations , 2018, 1804.01993.
[55] D. Eisenstein,et al. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models , 2018, 1802.10115.
[56] Hong Guo,et al. The conditional colour–magnitude distribution – I. A comprehensive model of the colour–magnitude–halo mass distribution of present-day galaxies , 2018, Monthly Notices of the Royal Astronomical Society.
[57] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[58] A. Berlind,et al. Small- and large-scale galactic conformity in SDSS DR7 , 2017, Monthly Notices of the Royal Astronomical Society.
[59] Rachel Mandelbaum,et al. Weak Lensing for Precision Cosmology , 2017, Annual Review of Astronomy and Astrophysics.
[60] Durham,et al. The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 , 2017, 1708.07628.
[61] S. Cole,et al. HBT+: an improved code for finding subhaloes and building merger trees in cosmological simulations. , 2017, 1708.03646.
[62] R. Mandelbaum,et al. Mapping stellar content to dark matter haloes - III. Environmental dependence and conformity of galaxy colours , 2017, 1703.09219.
[63] Xiaohui Fan,et al. Project Overview of the Beijing–Arizona Sky Survey , 2017, 1702.03653.
[64] B. Garilli,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2) , 2016, 1611.07048.
[65] J. Comparat,et al. Galaxy clustering dependence on the [O II] emission line luminosity in the local Universe , 2016, 1611.05457.
[66] Daniel Foreman-Mackey,et al. corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..
[67] Hong Guo,et al. On the clustering of faint red galaxies , 2015, 1510.00393.
[68] R. Mandelbaum,et al. Mapping stellar content to dark matter haloes – II. Halo mass is the main driver of galaxy quenching , 2015, 1509.06758.
[69] A. Bolton,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.
[70] S. Cole,et al. A unified model for the spatial and mass distribution of subhaloes , 2015, 1509.02175.
[71] J. Comparat,et al. Modelling galaxy clustering: halo occupation distribution versus subhalo matching. , 2015, Monthly notices of the Royal Astronomical Society.
[72] W. M. Wood-Vasey,et al. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA , 2015, 1508.04473.
[73] D. Schneider,et al. Clustering properties of g-selected galaxies at z similar to 0.8 , 2015, 1507.04356.
[74] J. Schaye,et al. Subhalo abundance matching and assembly bias in the EAGLE simulation , 2015, 1507.01948.
[75] R. Mandelbaum,et al. Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7 , 2015, 1505.02781.
[76] K. Dawson,et al. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.
[77] G. Zamorani,et al. The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.
[78] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[79] R. Nichol,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) A precise measurement of the galaxy stellar mass function and the abundance of massive galaxies at redshifts 0.5 , 2013, 1303.3808.
[80] S. White,et al. Numerical resolution limits on subhalo abundance matching , 2013, 1303.3586.
[81] R. Nichol,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) - an unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2 , 2013, 1303.2623.
[82] C. Baugh,et al. How robust are predictions of galaxy clustering , 2013, 1301.3497.
[83] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[84] A. Ealet,et al. Investigating emission-line galaxy surveys with the Sloan Digital Sky Survey infrastructure , 2012, 1207.4321.
[85] C. Baugh,et al. The clustering of Hα emitters at z = 2.23 from HiZELS , 2012 .
[86] Judith G. Cohen,et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.
[87] S. White,et al. Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.
[88] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[89] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[90] S. White,et al. The Phoenix Project: the dark side of rich galaxy clusters , 2012, 1201.1940.
[91] Jiaxin Han,et al. Resolving subhaloes’ lives with the Hierarchical Bound‐Tracing algorithm , 2011, 1103.2099.
[92] R. Davé,et al. Testing subhalo abundance matching in cosmological smoothed particle hydrodynamics simulations , 2010, 1011.4964.
[93] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[94] Y. Jing,et al. Modelling galaxy stellar mass evolution from z ∼ 0.8 to today , 2009, 0911.1864.
[95] S. White,et al. How do galaxies populate dark matter haloes , 2009, 0909.4305.
[96] B. Garilli,et al. zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.
[97] Heidelberg,et al. The population of dark matter subhaloes: mass functions and average mass-loss rates , 2007, 0712.1563.
[98] Cheng Li,et al. A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering , 2007, 0707.2628.
[99] J. Brinchmann,et al. The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.
[100] I. Zehavi,et al. Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.
[101] S. More,et al. Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.
[102] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[103] G. Kauffmann,et al. Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.
[104] Walter A. Siegmund,et al. # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .
[105] Princeton University.,et al. The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.
[106] H. Mo,et al. Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.
[107] A. Cooray. Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics , 2005, astro-ph/0509033.
[108] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[109] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[110] R. Davé,et al. Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.
[111] S. White,et al. The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.
[112] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[113] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[114] Y. Jing,et al. Spatial and Dynamical Biases in Velocity Statistics of Galaxies , 2003, astro-ph/0303053.
[115] H. Mo,et al. Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.
[116] Y. Jing,et al. Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.
[117] D. Weinberg,et al. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.
[118] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[119] J. Peacock,et al. Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.
[120] Chung-Pei Ma,et al. Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions , 2000, astro-ph/0003343.
[121] U. Seljak. Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.
[122] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[123] R. Wechsler,et al. Implications of Spikes in the Redshift Distribution of z ~ 3 Galaxies , 1998 .
[124] G. Bryan,et al. Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.
[125] Y. Jing,et al. Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.
[126] A. Szalay,et al. A New Class of Estimators for the N-Point Correlations , 1997, astro-ph/9704241.
[127] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[128] A. Hamilton. Measuring Omega and the real correlation function from the redshift correlation function , 1992 .
[129] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[130] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[131] Marc Davis,et al. A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .
[132] Michael Wegner,et al. Ground-based and Airborne Instrumentation for Astronomy III , 2010 .
[133] J. Gunn,et al. On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .