Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α−RuCl3
暂无分享,去创建一个
J. Brink | B. Buchner | J. Geck | S. Nagler | D. Mandrus | R. Ray | P. Lampen-Kelley | S. Limandri | A. Wolter | T. Doert | L. Hozoi | M. Roslova | G. Garbarino | A. Isaeva | R. Yadav | F. J. Martínez-Casado | M. Roslova | P. Lampen-Kelley | G. Bastien | Q. Stahl | M. Kusch | R. Rodr'iguez | F. J. Martinez-Casado | D. Mandrus | J. V. D. Brink | B. Büchner | Ram Naresh Yadav | Anna Isaeva
[1] A. Banerjee,et al. Unusual Phonon Heat Transport in α-RuCl_{3}: Strong Spin-Phonon Scattering and Field-Induced Spin Gap. , 2017, Physical review letters.
[2] D. Khomskii,et al. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li 2 IrO 3 under pressure , 2017, 1712.01669.
[3] Jiaqiang Yan,et al. High-temperature magnetostructural transition in van der Waals-layered a-MoCl3 , 2017, 1711.02708.
[4] Sang-Youn Park,et al. Majorana fermions in the Kitaev quantum spin system α-RuCl3 , 2017, Nature Physics.
[5] S. Y. Li,et al. Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet α-RuCl_{3} across the Field-Induced Phase Transition. , 2017, Physical review letters.
[6] R. Valentí,et al. Probing α-RuCl_{3} Beyond Magnetic Order: Effects of Temperature and Magnetic Field. , 2017, Physical review letters.
[7] A. Savici,et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3 , 2017, 1706.07003.
[8] S. Do,et al. Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.
[9] M. Vojta,et al. Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for α − RuCl 3 and Na 2 IrO 3 , 2017, 1706.05380.
[10] A. Banerjee,et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.
[11] Wenan Guo,et al. High-pressure magnetization and NMR studies of α − RuCl 3 , 2017, 1706.02697.
[12] A. Banerjee,et al. Antiferromagnetic Resonance and Terahertz Continuum in α-RuCl_{3}. , 2017, Physical review letters.
[13] S. Do,et al. Field-induced quantum criticality in the Kitaev system α − RuCl 3 , 2017, 1704.03475.
[14] J. Brink,et al. Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.
[15] D. Graf,et al. Anomalous Thermal Conductivity and Magnetic Torque Response in the Honeycomb Magnet α-RuCl_{3}. , 2016, Physical review letters.
[16] J. van den Brink,et al. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3 , 2016, Scientific Reports.
[17] A. Banerjee,et al. Neutron tomography of magnetic Majorana fermions in a proximate quantum spin liquid , 2016, 1609.00103.
[18] R. Valentí,et al. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales , 2016, 1603.02548.
[19] M. Lumsden,et al. Low-temperature crystal and magnetic structure of α -RuCl 3 , 2016, 1602.08112.
[20] D. Khomskii,et al. Covalent bonds against magnetism in transition metal compounds , 2016, Proceedings of the National Academy of Sciences.
[21] R. Moessner,et al. Dynamics of fractionalization in quantum spin liquids , 2015, 1507.02865.
[22] J. van den Brink,et al. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers , 2015, Nature Communications.
[23] A. Banerjee,et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature materials.
[24] M. Schmidt,et al. Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR , 2014, 1411.6515.
[25] Martin Schütz,et al. Molpro: a general‐purpose quantum chemistry program package , 2012 .
[26] Z. Fisk,et al. Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer. , 2011, The Review of scientific instruments.
[27] D. Khomskii,et al. Classical dimers and dimerized superstructure in an orbitally degenerate honeycomb antiferromagnet. , 2008, Physical review letters.
[28] G. Jackeli,et al. Dimer phases in quantum antiferromagnets with orbital degeneracy , 2007, 0705.2990.
[29] Michael Dolg,et al. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.
[30] Alexei Kitaev,et al. Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.
[31] H. Hillebrecht,et al. About Trihalides with TiI3 Chain Structure: Proof of Pair Forming of Cations in β‐RuCl3 and RuBr3 by Temperature Dependent Single Crystal X‐ray Analyses , 2004 .
[32] P. Knowles,et al. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .
[33] S. Derenzo,et al. Accurate crystal fields for embedded cluster calculations , 2000 .
[34] Trygve Helgaker,et al. Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .
[35] Louis J. Farrugia,et al. WinGX suite for small-molecule single-crystal crystallography , 1999 .
[36] H. Schäfer,et al. Neue Untersuchungen über die Chloride des Molybdäns , 1967 .
[37] Freiburg i. Br.,et al. Zeitschrift für anorganische und allgemeine Chemie , 2012 .
[38] G. Sheldrick. A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[39] David,et al. Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .
[40] Per-Olof Widmark,et al. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .