Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α−RuCl3

Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material α-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p∼0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin-liquid phase in α-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid.

[1]  A. Banerjee,et al.  Unusual Phonon Heat Transport in α-RuCl_{3}: Strong Spin-Phonon Scattering and Field-Induced Spin Gap. , 2017, Physical review letters.

[2]  D. Khomskii,et al.  Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li 2 IrO 3 under pressure , 2017, 1712.01669.

[3]  Jiaqiang Yan,et al.  High-temperature magnetostructural transition in van der Waals-layered a-MoCl3 , 2017, 1711.02708.

[4]  Sang-Youn Park,et al.  Majorana fermions in the Kitaev quantum spin system α-RuCl3 , 2017, Nature Physics.

[5]  S. Y. Li,et al.  Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet α-RuCl_{3} across the Field-Induced Phase Transition. , 2017, Physical review letters.

[6]  R. Valentí,et al.  Probing α-RuCl_{3} Beyond Magnetic Order: Effects of Temperature and Magnetic Field. , 2017, Physical review letters.

[7]  A. Savici,et al.  Excitations in the field-induced quantum spin liquid state of α-RuCl3 , 2017, 1706.07003.

[8]  S. Do,et al.  Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.

[9]  M. Vojta,et al.  Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for α − RuCl 3 and Na 2 IrO 3 , 2017, 1706.05380.

[10]  A. Banerjee,et al.  Neutron scattering in the proximate quantum spin liquid α-RuCl3 , 2017, Science.

[11]  Wenan Guo,et al.  High-pressure magnetization and NMR studies of α − RuCl 3 , 2017, 1706.02697.

[12]  A. Banerjee,et al.  Antiferromagnetic Resonance and Terahertz Continuum in α-RuCl_{3}. , 2017, Physical review letters.

[13]  S. Do,et al.  Field-induced quantum criticality in the Kitaev system α − RuCl 3 , 2017, 1704.03475.

[14]  J. Brink,et al.  Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl_{3}. , 2017, Physical review letters.

[15]  D. Graf,et al.  Anomalous Thermal Conductivity and Magnetic Torque Response in the Honeycomb Magnet α-RuCl_{3}. , 2016, Physical review letters.

[16]  J. van den Brink,et al.  Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3 , 2016, Scientific Reports.

[17]  A. Banerjee,et al.  Neutron tomography of magnetic Majorana fermions in a proximate quantum spin liquid , 2016, 1609.00103.

[18]  R. Valentí,et al.  Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales , 2016, 1603.02548.

[19]  M. Lumsden,et al.  Low-temperature crystal and magnetic structure of α -RuCl 3 , 2016, 1602.08112.

[20]  D. Khomskii,et al.  Covalent bonds against magnetism in transition metal compounds , 2016, Proceedings of the National Academy of Sciences.

[21]  R. Moessner,et al.  Dynamics of fractionalization in quantum spin liquids , 2015, 1507.02865.

[22]  J. van den Brink,et al.  Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers , 2015, Nature Communications.

[23]  A. Banerjee,et al.  Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. , 2015, Nature materials.

[24]  M. Schmidt,et al.  Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: Susceptibility, specific heat, and zero-field NMR , 2014, 1411.6515.

[25]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[26]  Z. Fisk,et al.  Miniature ceramic-anvil high-pressure cell for magnetic measurements in a commercial superconducting quantum interference device magnetometer. , 2011, The Review of scientific instruments.

[27]  D. Khomskii,et al.  Classical dimers and dimerized superstructure in an orbitally degenerate honeycomb antiferromagnet. , 2008, Physical review letters.

[28]  G. Jackeli,et al.  Dimer phases in quantum antiferromagnets with orbital degeneracy , 2007, 0705.2990.

[29]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[30]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[31]  H. Hillebrecht,et al.  About Trihalides with TiI3 Chain Structure: Proof of Pair Forming of Cations in β‐RuCl3 and RuBr3 by Temperature Dependent Single Crystal X‐ray Analyses , 2004 .

[32]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[33]  S. Derenzo,et al.  Accurate crystal fields for embedded cluster calculations , 2000 .

[34]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[35]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[36]  H. Schäfer,et al.  Neue Untersuchungen über die Chloride des Molybdäns , 1967 .

[37]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[38]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[39]  David,et al.  Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .

[40]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .