MgNiO-based metal–semiconductor– metal ultraviolet photodetector

In this study, we report the growth of MgxNi1?xO thin films on quartz substrates by electron beam evaporation. The absorption edge shows a blue shift from 340?nm to 260?nm with increase in the Mg content from 0.2 to 0.8. A metal?semiconductor?metal structured photodetector is fabricated from the Mg0.2Ni0.8O film. At a bias of 5?V, the dark current of the photodetector is about 70?nA. The maximum responsivity is about 147.3??A?W?1 at 320?nm. In addition, the ultraviolet (UV) (320?nm) to visible (400?nm) rejection ratio is nearly two orders of magnitude. Based on these results, it is proposed that MgxNi1?xO is a potential candidate for application in UV photodetectors.

[1]  W. Roth Magnetic Structures of MnO, FeO, CoO, and NiO , 1958 .

[2]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[3]  Feng,et al.  Phase diagram and magnetic properties of the diluted fcc system NipMg1-pO. , 1992, Physical review. B, Condensed matter.

[4]  Manijeh Razeghi,et al.  Semiconductor ultraviolet detectors , 1996 .

[5]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[6]  Cole W. Litton,et al.  Solar-blind UV region and UV detector development objectives , 1999, Photonics West.

[7]  Yu. A. Goldberg Semiconductor near-ultraviolet photoelectronics , 1999 .

[8]  E. Monroy,et al.  High visible rejection AlGaN photodetectors on Si(111) substrates , 2000 .

[9]  M. Najdoski,et al.  A solution growth route to nanocrystalline nickel oxide thin films , 2000 .

[10]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO(0⩽x⩽0.49) thin films , 2001 .

[11]  Hongen Shen,et al.  Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films , 2001 .

[12]  A. Enders,et al.  Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers , 2001 .

[13]  Ichiro Takeuchi,et al.  Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−xO composition spreads , 2003 .

[14]  Ichiro Takeuchi,et al.  Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors , 2003 .

[15]  Hideo Hosono,et al.  Transparent Oxide Optoelectronics , 2004 .

[16]  Synthesis of MgxNi1-xO thin films with a band-gap in the solar-blind region , 2005 .

[17]  Mitsuaki Yano,et al.  Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented si substrate toward UV-detector applications , 2005 .

[18]  E. Cazzanelli,et al.  Behavior of one-magnon frequency in antiferromagnetic NicMg1˛cO solid solutions , 2005 .

[19]  M. Jeong,et al.  The fabrication and characterization of ZnO UV detector , 2005 .

[20]  Deep-ultraviolet Al0.75Ga0.25N photodiodes with low cutoff wavelength , 2006 .

[21]  K. V. Rao,et al.  XRD, microstructural and EPR susceptibility characterization of combustion synthesized nanoscale Mg1−xNixO solid solutions , 2008 .

[22]  Ekmel Ozbay,et al.  Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity , 2008 .