We present a single mode multi-section quantum cascade laser source composed of three different sections: master oscillator, gain and phase section. Non-uniform pumping of the QCL’s gain reveals that the various laser sections are strongly coupled. Simulations of the electronic and optical properties of the laser (based on the density matrix and scattering matrix formalisms, respectively) were performed and a good agreement with measurements is obtained. In particular, a pure modulation of the laser output power can be achieved. This capability of the device is applied in tunable-laser spectroscopy of N2O where background-free quartz enhanced photo acoustic spectral scans with nearly perfect Voigt line shapes for the selected absorption line are obtained. c © 2016 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers, quantum cascade; (230.1480) Bragg reflectors; (250.5960) Semiconductor lasers; (140.0140) Lasers and laser optics. References and links 1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994). 2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Applied Physics Letters 98, 181102 (2011). 3. A. Bismuto, Y. Bidaux, S. Blaser, R. Terazzi, T. Gresch, M. Rochat, A. Muller, C. Bonzon, and J. Faist, “High power and single mode quantum cascade lasers,” Optics Express 24, 10694 (2016). 4. A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Optics Express 23, 5477 (2015). 5. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Applied Physics B 90, 165–176 (2008). 6. C. K. N. Patel, “Quantum cascade lasers: a game changer for defense and homeland security IR photonics,” in “SPIE Defense, Security, and Sensing,” (International Society for Optics and Photonics, 2011), pp. 803126. 7. K. Ruxton, A. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sensors and Actuators B: Chemical 150, 367–375 (2010). 8. Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” Journal of Applied Physics 118, 093101 (2015). 9. A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Optics Express 23, 29715 (2015). 10. D. Y. K. Ko and J. R. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” JOSA A 5, 1863–1866 (1988). 11. H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B 67, 085315 (2003). Vol. 24, No. 23 | 14 Nov 2016 | OPTICS EXPRESS 26464 #275016 http://dx.doi.org/10.1364/OE.24.026464 Journal © 2016 Received 31 Aug 2016; revised 14 Oct 2016; accepted 14 Oct 2016; published 7 Nov 2016 12. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010). 13. L. Tombez, F. Cappelli, S. Schilt, G. Di Domenico, S. Bartalini, and D. Hofstetter, “Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 103, 031111 (2013). 14. M. Süess, P. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, and J. Faist, “Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis,” Photonics 3, 24 (2016). 15. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Optics Letters 27, 1902–1904 (2002). 16. P. Patimisco, G. Scamarcio, F. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors 14, 6165–6206 (2014). 17. P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. Tittel, and V. Spagnolo, “Analysis of the electroelastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensors and Actuators B: Chemical 227, 539–546 (2016). 18. L. Rothman, I. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. Brown, A. Campargue, K. Chance, E. Cohen, L. Coudert, V. Devi, B. Drouin, A. Fayt, J.-M. Flaud, R. Gamache, J. Harrison, J.-M. Hartmann, C. Hill, J. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. Le Roy, G. Li, D. Long, O. Lyulin, C. Mackie, S. Massie, S. Mikhailenko, H. Müller, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. Polovtseva, C. Richard, M. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. Toon, V. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer 130, 4–50 (2013).
[1]
J. Faist,et al.
Quantum Cascade Laser
,
1994,
Science.
[2]
Frank K. Tittel,et al.
Quartz-Enhanced Photoacoustic Spectroscopy: A Review
,
2014,
Sensors.
[3]
Daniel Hofstetter,et al.
Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers
,
2013
.
[4]
A. Bismuto,et al.
High power and single mode quantum cascade lasers.
,
2016,
Optics express.
[5]
Yves Bidaux,et al.
Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters.
,
2015,
Optics express.
[6]
George Stewart,et al.
Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach
,
2010
.
[7]
A. Kosterev,et al.
Quartz-enhanced photoacoustic spectroscopy.
,
2002,
Optics letters.
[8]
John Roy Sambles,et al.
Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals
,
1988
.
[9]
Frank K. Tittel,et al.
Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing
,
2016
.
[10]
A. Bismuto,et al.
High performance , low dissipation quantum cascade lasers across the midIR range
,
2015
.
[11]
Jérôme Faist,et al.
A density matrix model of transport and radiation in quantum cascade lasers
,
2010
.
[12]
Yves Bidaux,et al.
Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks
,
2015
.
[13]
Mattias Beck,et al.
Dual-Section DFB-QCLs for Multi-Species Trace Gas Analysis
,
2016
.
[14]
M. Fraser,et al.
Application of quantum cascade lasers to trace gas analysis
,
2008
.
[15]
Manijeh Razeghi,et al.
Room temperature quantum cascade lasers with 27% wall plug efficiency
,
2011
.
[16]
C. Kumar N. Patel,et al.
Quantum cascade lasers: a game changer for defense and homeland security IR photonics
,
2011,
Defense + Commercial Sensing.