Interpolatory wavelets for manifold-valued data
暂无分享,去创建一个
[1] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[2] Philipp Grohs,et al. Smoothness of interpolatory multivariate subdivision in Lie groups , 2009 .
[3] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[4] Rong-Qing Jia,et al. Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..
[5] Mats Holmström,et al. Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..
[6] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[7] Gang Xie,et al. Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..
[8] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[9] I. Holopainen. Riemannian Geometry , 1927, Nature.
[10] T. Yu,et al. Smoothness equivalence properties of interpolatory Lie group subdivision schemes , 2010 .
[11] I. Daubechies,et al. Normal Multiresolution Approximation of Curves , 2004 .
[12] Philipp Grohs,et al. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues , 2009, Numerische Mathematik.
[13] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[14] Gang Xie,et al. Smoothness Equivalence Properties of Manifold-Valued Data Subdivision Schemes Based on the Projection Approach , 2007, SIAM J. Numer. Anal..
[15] Gitta Kutyniok,et al. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..
[16] Nira Dyn,et al. Approximation order of interpolatory nonlinear subdivision schemes , 2010, J. Comput. Appl. Math..
[17] Johannes Wallner,et al. Smoothness Properties of Lie Group Subdivision Schemes , 2007, Multiscale Model. Simul..
[18] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[19] Karl Scherer,et al. Approximationsprozesse und Interpolationsmethoden , 1968 .
[20] Philipp Grohs,et al. Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..
[21] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[22] C. Micchelli,et al. On vector subdivision , 1998 .
[23] H. Johnen,et al. On the equivalence of the K-functional and moduli of continuity and some applications , 1976, Constructive Theory of Functions of Several Variables.
[24] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[25] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[26] Peter Schröder,et al. Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..
[27] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[28] C. Micchelli,et al. Stationary Subdivision , 1991 .