The First Steps of Chemical Evolution towards the Origin of Life

[1]  N. Lahav,et al.  Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. , 1978, Science.

[2]  P. Schwerdtfeger,et al.  Biomolecular Homochirality and Electroweak Interactions. I. The Yamagata Hypothesis , 2003 .

[3]  B. Rode,et al.  Glycine and Diglycine as Possible Catalytic Factors in the Prebiotic Evolution of Peptides , 2002, Origins of life and evolution of the biosphere.

[4]  B. Rode,et al.  Catalytic effects of glycine on prebiotic divaline and diproline formation , 2005, Peptides.

[5]  S. Fox,et al.  Thermal Synthesis of Natural Amino-Acids from a Postulated Primitive Terrestrial Atmosphere , 1964, Nature.

[6]  L. Orgel,et al.  Prebiotic peptide-formation in the solid state , 1975, Journal of Molecular Evolution.

[7]  J. Rabinowitz,et al.  Peptide Formation in the Presence of Linear or Cyclic Polyphosphates , 1969, Nature.

[8]  J. Lawless,et al.  Thermal Synthesis of Amino Acids from a Simulated Primitive Atmosphere , 1973, Nature.

[9]  Reactions of Cu(II) with glycine and glycylglycine in aqueous solution at high concentrations of sodium chloride , 1990 .

[10]  A. von Zelewsky,et al.  Predetermined Chirality at Metal Centers. , 1999, Angewandte Chemie.

[11]  C. E. Wieman,et al.  Measurement of Parity Nonconservation and an Anapole Moment in Cesium , 1997, Science.

[12]  Peter Decker,et al.  Bioids : X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225 , 1982 .

[13]  W. Groth,et al.  Photochemische Bildung von Aminosäuren aus Mischungen einfacher Gase , 2004, Naturwissenschaften.

[14]  B. Rode,et al.  Evaporation cycle experiments — A simulation of salt-induced peptide synthesis under possible prebiotic conditions , 1993, Origins of life and evolution of the biosphere.

[15]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[16]  P. Cloud Paleoecological Significance of the Banded Iron-Formation , 1973 .

[17]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[18]  Y Yamagata,et al.  A hypothesis for the asymmetric appearance of biomolecules on earth. , 1966, Journal of theoretical biology.

[19]  R. G. Kostyanovsky,et al.  Resolution of racemates with achiral reagents , 2000 .

[20]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[21]  W. Eisenreich,et al.  A Possible Primordial Peptide Cycle , 2003, Science.

[22]  C. Sagan,et al.  Long-Wavelength Ultraviolet Photoproduction of Amino Acids on the Primitive Earth , 1971, Science.

[23]  Walther Löub Studien über die chemische Wirkung der stillen elektrischen Entladung. , 1906 .

[24]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[25]  S. Fox,et al.  Thermal copolymerization of amino acids to a product resembling protein. , 1958, Science.

[26]  J. Kasting,et al.  Warming Early Earth and Mars , 1997, Science.

[27]  F. Dyson Origins of Life , 1985 .

[28]  B. Rode,et al.  Copper-catalyzed amino acid condensation in water — A simple possible way of prebiotic peptide formation , 1990, Origins of life and evolution of the biosphere.

[29]  W. Bonner,et al.  Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. , 1977, Journal of the American Chemical Society.

[30]  B. Rode,et al.  A Quantum Chemical Analysis of the Structural Entities in Aqueous Sodium Chloride Solution and Their Concentration Dependence , 1985 .

[31]  B. Rode,et al.  Prebiotic Chemistry: The Amino Acid and Peptide World , 2005 .

[32]  Bernd M. Rode,et al.  Amino acids on the rampant primordial Earth: Electric discharges and the hot salty ocean , 2006, Molecular Diversity.

[33]  A. Brack Selective emergence and survival of early polypeptides in water , 2006, Origins of life and evolution of the biosphere.

[34]  E. James Milner-White,et al.  Sites for Phosphates and Iron-Sulfur Thiolates in the First Membranes: 3 to 6 Residue Anion-Binding Motifs (Nests) , 2005, Origins of Life and Evolution of Biospheres.

[35]  Kensei Kobayashi,et al.  Prebiotic synthesis from CO atmospheres: Implications for the origins of life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Löb Über das Verhalten des Formamids unter der Wirkung der stillen Entladung Ein Beitrag zur Frage der Stickstoff-Assimilation , 1913 .

[37]  S. Fox,et al.  The Thermal Condensation of Glutamic Acid and Glycine to Linear Peptides1 , 1958 .

[38]  B. Rode,et al.  Peptide chain elongation: A possible role of montmorillonite in prebiotic synthesis of protein precursors , 1995, Origins of life and evolution of the biosphere.

[39]  D. D. Hoppes,et al.  Experimental Test of Parity Conservation in Beta Decay , 1957 .

[40]  Jean Chmielewski,et al.  Approaching exponential growth with a self-replicating peptide. , 2002, Journal of the American Chemical Society.

[41]  B. Rode,et al.  Investigations on the mechanism of the salt-induced peptide formation , 2005, Origins of life and evolution of the biosphere.

[42]  E. Ochiai The evolution of the environment and its influence on the evolution of life , 1978, Origins of life.

[43]  B. Rode,et al.  Peptides and the origin of life1 , 1999, Peptides.

[44]  M. Quack,et al.  Electroweak quantum chemistry of alanine: parity violation in gas and condensed phases. , 2000, ChemPhysChem.

[45]  G. Tranter The parity violating energy differences between the enantiomers of α-amino acids , 1985 .

[46]  D. Lancet,et al.  Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[48]  John W. Delano,et al.  Redox History of the Earth's Interior since ∼3900 Ma: Implications for Prebiotic Molecules , 2001, Origins of life and evolution of the biosphere.

[49]  Bernd M. Rode,et al.  Catalytically Increased Prebiotic Peptide Formation: Ditryptophan, Dilysine, and Diserine , 2005, Origins of Life and Evolution of Biospheres.

[50]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank. , 1991, Nucleic acids research.

[51]  Yoshihisa Inoue Asymmetric photochemical reactions in solution , 1992 .

[52]  S. Miller,et al.  Oceanic protection of prebiotic organic compounds from UV radiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Shapiro,et al.  The prebiotic role of adenine: A critical analysis , 1995, Origins of Life and Evolution of the Biosphere.

[54]  L. Orgel,et al.  Prebiotic peptide-formation in the solid state , 1975, Journal of Molecular Evolution.

[55]  Chen Ning Yang,et al.  Question of Parity Conservation in Weak Interactions , 1956 .

[56]  A. V. Zelewsky,et al.  Prädeterminierte Chiralität an Metallzentren , 1999 .

[57]  A. Brack The origin of life on Earth , 1991 .

[58]  T. Filley,et al.  Selective adsorption of l- and d-amino acids on calcite: Implications for biochemical homochirality , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  B. Rode,et al.  Possible Role of Copper and Sodium Chloride in Prebiotic Evolution of Peptides , 1989 .

[60]  P. Schwerdtfeger,et al.  Fully relativistic ab initio calculations of the energies of chiral molecules including parity-violating weak interactions , 1999 .

[61]  M. Levy,et al.  The stability of the RNA bases: implications for the origin of life. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  B. Rode,et al.  Amino acid sequence preferences of the salt-induced peptide formation reaction in comparison to archaic cell protein composition , 1997 .

[63]  G. Wächtershäuser,et al.  Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. , 1998, Science.

[64]  S. Macko,et al.  Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.

[65]  W. Bonner Chirality Amplification – The Accumulation Principle Revisited , 1999, Origins of life and evolution of the biosphere.

[66]  Juan R. Granja,et al.  A self-replicating peptide , 1996, Nature.

[67]  B. Rode,et al.  Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction. , 1998, Origins of life and evolution of the biosphere.

[68]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank: current status. , 1994, Nucleic acids research.

[69]  H. Wenschuh,et al.  The Helix-Destabilizing Propensity Scale of d-Amino Acids: The Influence of Side Chain Steric Effects , 2000 .

[70]  Joel S. Levine,et al.  The prebiological paleoatmosphere: Stability and composition , 1982, Origins of life.

[71]  Bernd M. Rode,et al.  The effect of smectite composition on the catalysis of peptide bond formation , 1996, Journal of Molecular Evolution.

[72]  B. Rode,et al.  Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution , 1999, Origins of life and evolution of the biosphere.

[73]  S. Terashima,et al.  Amino Acids and Peptides. I. Novel Peptide Bond Formation Catalyzed by Metal Ions. I. Formation of Glycine Peptide Esters , 1971 .

[74]  B. Rode,et al.  The Combination of Salt Induced Peptide Formation Reaction and Clay Catalysis: A Way to Higher Peptides under Primitive Earth Conditions , 1999, Origins of life and evolution of the biosphere.

[75]  Indraneel Ghosh,et al.  Selective amplification by auto- and cross-catalysis in a replicating peptide system , 1998, Nature.

[76]  Stanley B. Prusiner,et al.  Nobel Lecture: Prions , 1998 .

[77]  Stanley L. Miller,et al.  The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time , 1996, Cell.

[78]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[79]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[80]  B. Rode,et al.  Possible Origins of Biohomochirality , 2007 .

[81]  R D MacElroy,et al.  Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine. , 1984, Journal of the American Chemical Society.

[82]  E. Anders,et al.  Origin of organic matter in early solar system—III. Amino acids: Catalytic synthesis , 1971 .

[83]  A. Bairoch The ENZYME data bank. , 1993, Nucleic acids research.

[84]  B. Rode,et al.  Solvent structures around Na+ and Cl− ions in water , 1985 .

[85]  H. J. Hofmann,et al.  Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia , 1999 .

[86]  R. Lemmon,et al.  Simultaneous peptide and oligonucleotide formation in mixtures of amino acid, nucleoside triphosphate, imidazole, and magnesium ion. , 1977, Bio Systems.

[87]  A. Brack,et al.  Elongation of oligopeptides in a simulated submarine hydrothermal system. , 1999, Science.

[88]  A. Cairns-smith Genetic takeover and the mineral origins of life , 1982 .

[89]  K. Ogura,et al.  Photolysis of CH4NH3H2O mixture: formation of methylamine and ethylenediamine , 1989 .

[90]  P. Schwerdtfeger,et al.  D- or L-alanine: that is the question. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[91]  B. Rode,et al.  Silica, Alumina, and Clay-Catalyzed Alanine Peptide Bond Formation , 1997, Journal of Molecular Evolution.

[92]  Stanley L. Miller,et al.  Reasons for the occurrence of the twenty coded protein amino acids , 1981, Journal of Molecular Evolution.

[93]  B. Rode,et al.  Salt-induced formation of mixed peptides under possible prebiotic conditions , 1991 .

[94]  B. Rode,et al.  Ab initio calculations concerning the reaction mechanism of the copper(II) catalyzed glycine condensation in aqueous sodium chloride solution , 1992 .

[95]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[96]  P. Cintas,et al.  Symmetry Breaking by Spontaneous Crystallization – Is it the Most Plausible Source of Terrestrial Handedness we have Long Been Looking for? – A Reappraisal , 2004, Origins of life and evolution of the biosphere.

[97]  C. Sotriffer,et al.  Are prions a relic of an early stage of peptide evolution?☆ , 1999, Peptides.

[98]  J. Yamanaka,et al.  Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions , 2005, Origins of life and evolution of the biosphere.

[99]  Peter Schuster,et al.  A principle of natural self-organization , 1977, Naturwissenschaften.

[100]  B. Rode,et al.  The Possible Influence of L‐Histidine on the Origin of the First Peptides on the Primordial Earth , 2006, Chemistry & biodiversity.

[101]  C. Chyba,et al.  The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases , 1997, Science.

[102]  Graham Cairns-Smith Seven clues to the origin of life , 1985 .

[103]  J. Rabinowitz,et al.  Quantitative polyphosphate-induced “prebiotic” peptide formation in H2O by addition of certain azoles and ions , 1985, Journal of Molecular Evolution.

[104]  B. Rode,et al.  Influence of alkali- and alkaline-earth-metal cations on the ‘salt-induced peptide formation’ reaction , 1994 .

[105]  R. Shapiro Prebiotic ribose synthesis: A critical analysis , 1986, Origins of life and evolution of the biosphere.

[106]  C. Girardet,et al.  Interaction potential and chiral discrimination between an alanine molecule and a quartz surface , 1986 .

[107]  U. Niesert,et al.  Origin of life between scylla and charybdis , 2005, Journal of Molecular Evolution.

[108]  M. Robertson,et al.  Rates of decomposition of ribose and other sugars: implications for chemical evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[109]  M. Calvin,et al.  PRIMORDIAL ORGANIC CHEMISTRY. I. COMPOUNDS RESULTING FROM ELECTRON IRRADIATION OF C$sup 14$H$sub 4$ , 1962 .

[110]  A. Favier,et al.  A theoretical study of the difference in the behavior ofl- andd-alanine toward the two inverse forms of kaolinite , 1990 .

[111]  W. Bonner,et al.  Asymmetric adsorption of DL-alanine hydrochloride by quartz. , 1976, The Journal of organic chemistry.

[112]  S. Fox,et al.  The Thermal Copolymerization of Amino Acids Common to Protein1 , 1960 .

[113]  B. Rode,et al.  Prebiotic formation of amino acids in a neutral atmosphere by electric discharge. , 2004, Angewandte Chemie.

[114]  Bernd M. Rode,et al.  Stereoselective differentiation in the Salt-induced Peptide Formation reaction and its relevance for the origin of life , 2005, Peptides.

[115]  B. Rode,et al.  Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions , 1995 .

[116]  F. Cohen,et al.  Prion Protein Biology , 1998, Cell.

[117]  R. Tauler,et al.  Indications towards a stereoselectivity of the salt-induced peptide formation reaction , 2004 .

[118]  C. Sagan,et al.  Shock Synthesis of Amino Acids in Simulated Primitive Environments , 1970, Science.