Curvature of Approximating Curve Subdivision Schemes

The promise of modeling by subdivision is to have simple rules that avoid cumbersome stitching-together of pieces. However, already in one variable, exactly reproducing a variety of basic shapes, such as conics and spirals, leads to non-stationary rules that are no longer as simple; and combining these pieces within the same curve by one set of rules is challenging. Moreover, basis functions, that allow reading off smoothness and computing curvature, are typically not available. Mimicking subdivision of splines with non-uniform knots allows us to combine the basic shapes. And to analyze non-uniform subdivision in general, the literature proposes interpolating the sequence of subdivision control points by circles. This defines a notion of discrete curvature for interpolatory subdivision. However, we show that this discrete curvature generically yields misleading information for non-interpolatory subdivision and typically does not converge, not even for non-uniform spline subdivision. Analyzing the causes yields three general approaches for solving or at least mitigating the problem: equalizing parameterizations, sampling subsequences and a new skip-interpolating subdivision approach.

[1]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[2]  Neil A. Dodgson,et al.  A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .

[3]  Ron Goldman,et al.  Nonlinear subdivision through nonlinear averaging , 2008, Comput. Aided Geom. Des..

[4]  Lucia Romani A circle-preserving C2 Hermite interpolatory subdivision scheme with tension control , 2010, Comput. Aided Geom. Des..

[5]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[6]  Lucia Romani From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .

[7]  C. Conti,et al.  Affine combination of B-spline subdivision masks and its non-stationary counterparts , 2010 .

[8]  Bert Jüttler,et al.  A non-linear circle-preserving subdivision scheme , 2007, Adv. Comput. Math..

[9]  Brian A. Barsky,et al.  Rational continuity: parametric, geometric, and Frenet frame continuity of rational curves , 1989, TOGS.

[10]  Philipp Grohs,et al.  Approximation order from stability for nonlinear subdivision schemes , 2010, J. Approx. Theory.

[11]  Carolina Vittoria Beccari,et al.  A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics , 2007, Comput. Aided Geom. Des..

[12]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[13]  Pierre Vandergheynst,et al.  Non-linear subdivision using local spherical coordinates , 2003, Comput. Aided Geom. Des..

[14]  Carolina Vittoria Beccari,et al.  Shape controlled interpolatory ternary subdivision , 2009, Appl. Math. Comput..

[15]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[17]  Nira Dyn,et al.  Acta Numerica 2002: Subdivision schemes in geometric modelling , 2002 .

[18]  Jörg Peters,et al.  Rational G2 splines , 2011, Graph. Model..

[19]  N. A. Dodgson,et al.  Variations on the four-point subdivision scheme , 2010, Comput. Aided Geom. Des..

[20]  B. Mourrain,et al.  A Subdivision Arrangement Algorithm for Semi-Algebraic Curves: An Overview , 2007 .

[21]  Scott Schaefer,et al.  Exact Evaluation of Non-Polynomial Subdivision Schemes at Rational Parameter Values , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[22]  Nira Dyn,et al.  Four-point curve subdivision based on iterated chordal and centripetal parameterizations , 2009, Comput. Aided Geom. Des..

[23]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[24]  Guozhao Wang,et al.  Incenter subdivision scheme for curve interpolation , 2010, Comput. Aided Geom. Des..