Relaxation times do not capture logical qubit dynamics.

Quantum error correction procedures have the potential to enable faithful operation of large-scale quantum computers. They protect information from environmental decoherence by storing it in logical qubits, built from ensembles of entangled physical qubits according to suitably tailored quantum error correcting encodings. To date, no generally accepted framework to characterise the behaviour of logical qubits as quantum memories has been developed. In this work, we show that generalisations of well-established figures of merit of physical qubits, such as relaxation times, to logical qubits fail and do not capture dynamics of logical qubits. We experimentally illustrate that, in particular, spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits. We show that a suitable set of observables, formed by code space population and logical operators within the code space, allows one to track and characterize the dynamical behaviour of logical qubits. Awareness of these effects and the efficient characterisation tools used in this work will help to guide and benchmark experimental implementations of logical qubits.

[1]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[2]  J. Gea-Banacloche,et al.  Quantum error correction against correlated noise , 2004 .

[3]  John Preskill,et al.  Sufficient condition on noise correlations for scalable quantum computing , 2012, Quantum Inf. Comput..

[4]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[5]  K. B. Whaley,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[6]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[7]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[8]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[9]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[10]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[11]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[12]  Shilin Huang,et al.  Logical performance of 9 qubit compass codes in ion traps with crosstalk errors , 2019 .

[13]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[14]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[15]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.

[16]  H. Häffner,et al.  Robust entanglement , 2005 .

[17]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[18]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[19]  Daniel Nigg,et al.  Experimental quantification of spatial correlations in quantum dynamics , 2018, Quantum.

[20]  Rochus Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[21]  Eduardo R Mucciolo,et al.  Surface code threshold in the presence of correlated errors. , 2012, Physical review letters.

[22]  Daniel Nigg,et al.  Compiling quantum algorithms for architectures with multi-qubit gates , 2016, 1601.06819.

[23]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[24]  H. Baranger,et al.  Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.

[25]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[28]  A. Shabani Correlated errors can lead to better performance of quantum codes , 2008 .

[29]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[31]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[32]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .

[33]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[34]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[35]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[36]  Markus Muller,et al.  Quantifying spatial correlations of general quantum dynamics , 2014, 1409.1770.

[37]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[38]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.