Geochemistry of pyrite from stratabound massive sulfide deposits, Tongling region, China: Implication for their genesis

[1]  Dawei Tang,et al.  Geochronological and geochemical constraints on the formation of Chizhou Cu-Mo polymetallic deposits, middle and lower Yangtze metallogenic belt, eastern China , 2019, Ore Geology Reviews.

[2]  Yang Li,et al.  Tracing water-rock interaction in carbonate replacement deposits: A SIMS pyrite S-Pb isotope perspective from the Chinese Xinqiao system , 2019, Ore Geology Reviews.

[3]  Wei-dong Sun,et al.  Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review , 2018 .

[4]  F. Yuan,et al.  The genesis of the Hehuashan Pb–Zn deposit and implications for the Pb–Zn prospectivity of the Tongling district, Middle–Lower Yangtze River Metallogenic Belt, Anhui Province, China , 2018, Ore Geology Reviews.

[5]  Xian‐Hua Li,et al.  Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle–Lower Yangtze River metallogenic belt, China , 2018 .

[6]  Rongqing Zhang,et al.  Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China , 2018 .

[7]  Jun Gao,et al.  Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China) , 2017, Ore Geology Reviews.

[8]  J.A. Walker,et al.  Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits , 2018 .

[9]  G. Jenkin,et al.  A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes , 2017 .

[10]  Yu Zhang,et al.  A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes , 2017 .

[11]  R. Large,et al.  Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia , 2017 .

[12]  Jian-wei Li,et al.  An Early Cretaceous carbonate replacement origin for the Xinqiao stratabound massive sulfide deposit, Middle-Lower Yangtze Metallogenic Belt, China , 2017 .

[13]  Xiao-Wen Huang,et al.  Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China , 2016 .

[14]  K. Haase,et al.  Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus , 2016 .

[15]  Lejun Zhang,et al.  LA-ICP-MS in situ trace elements and FE-SEM analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui and its constraints on the ore genesis , 2016 .

[16]  M. Gadd,et al.  The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization , 2016, Mineralium Deposita.

[17]  T. Lyons,et al.  Trace Element Content of Sedimentary Pyrite in Black Shales , 2015 .

[18]  S. Petersen,et al.  Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides : an in-situ LA-ICP-MS study , 2015 .

[19]  J. Slack,et al.  Hydrothermal, Biogenic, and Seawater Components in Metalliferous Black Shales of the Brooks Range, Alaska: Synsedimentary Metal Enrichment in a Carbonate Ramp Setting , 2015 .

[20]  R. Creaser,et al.  Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn-Pb ore field , 2015 .

[21]  L. Qi,et al.  Trace element concentrations in porphyry copper deposits from Metaliferi Mountains, Romania: A reconnaissance study , 2014 .

[22]  R. Large,et al.  Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey) , 2014 .

[23]  Jing Zhang,et al.  LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process ☆ ☆☆ , 2014 .

[24]  R. Ewing,et al.  The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits , 2014 .

[25]  J. Long,et al.  Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution , 2014 .

[26]  徐晓春,et al.  Morphological characteristics and genesis of colloform pyrite in Xinqiao Fe-S deposit, Tongling, Anhui Province , 2014 .

[27]  R. Bodnar,et al.  13.5 – Fluid Inclusions in Hydrothermal Ore Deposits , 2014 .

[28]  A. Agangi,et al.  Pyrite Zoning as a Record of Mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa , 2013 .

[29]  M. Parada,et al.  Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study , 2013 .

[30]  K. Haase,et al.  Trace element systematics of pyrite from submarine hydrothermal vents , 2013 .

[31]  Jianguo Du,et al.  Early Cretaceous dioritic rocks in the Tongling region, eastern China: Implications for the tectonic settings , 2012 .

[32]  S. Utsunomiya,et al.  Letter: Gold-telluride nanoparticles revealed in arsenic-free pyrite , 2012 .

[33]  F. Pirajno,et al.  A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China , 2011 .

[34]  Xiangkun Zhu,et al.  Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu–S–Fe–Au deposit in the Middle–Lower Yangtze valley , 2011 .

[35]  H. Frimmel,et al.  LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis , 2011 .

[36]  R. Hough,et al.  Trace metal nanoparticles in pyrite , 2011 .

[37]  Weimin Guo,et al.  Re-Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: Geochronological evidence for submarine exhalative sedimentation , 2011 .

[38]  R. Berry,et al.  Pyrite and Pyrrhotite Textures and Composition in Sediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights for Ore Genesis , 2011 .

[39]  M. Reich,et al.  “Invisible” silver and gold in supergene digenite (Cu1.8S) , 2010 .

[40]  H. Frimmel,et al.  Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits , 2010 .

[41]  R. Large,et al.  Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) , 2009 .

[42]  R. Large,et al.  Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits , 2009 .

[43]  R. Ewing,et al.  Decoupled geochemical behavior of As and Cu in hydrothermal systems , 2009 .

[44]  A. Boyce,et al.  Growth controls in colloform pyrite , 2009 .

[45]  Jianguo Du,et al.  Geochronological and geochemical constraints on formation of the Tongling metal deposits, middle Yangtze metallogenic belt, east‐central China , 2009 .

[46]  Yanhua Hu,et al.  CRETACEOUS RIDGE SUBDUCTION ALONG THE LOWER YANGTZE RIVER BELT, EASTERN CHINA , 2009 .

[47]  K. Zaw,et al.  Distinctive features of Late Palaeozoic massive sulphide deposits in South China , 2007 .

[48]  T. Zhou,et al.  Molybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications , 2006 .

[49]  R. Ewing,et al.  Solubility of gold in arsenian pyrite , 2005 .

[50]  G. Dipple,et al.  World Skarn Deposits , 2005 .

[51]  R. Binns,et al.  Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization , 2004, Nature.

[52]  T. Zhou,et al.  Os-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze River, China , 2003 .

[53]  Gu Lianxing,et al.  Multi-episode fluid boiling in the Shizishan copper-gold deposit at Tongling, Anhui Province: its bearing on ore formation , 2002 .

[54]  L. Gu,et al.  Multi-episode fluid boiling in the Shizishan copper-gold deposit at Tongling, Anhui Province: its bearing on ore formation , 2002 .

[55]  G. Xu,et al.  The Xinqiao Cu–S–Fe–Au deposit in the Tongling mineral district, China: synorogenic remobilization of a stratiform sulfide deposit , 2001 .

[56]  Zhidong Xie,et al.  Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region in eastern China: constraints on sources , 2001 .

[57]  L. Gu,et al.  Regional variations in ore composition and fluid features of massive sulphide deposits in South China: Implications for genetic modelling , 2000 .

[58]  Stuart W. Bull,et al.  The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits , 2000 .

[59]  Yuanming Pan,et al.  The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits , 1999 .

[60]  J. Craig,et al.  Pyrite: physical and chemical textures , 1998 .

[61]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[62]  R. Zierenberg,et al.  Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge , 1993 .

[63]  W. Goodfellow,et al.  Oxygen-isotope composition and temperature of fluids involved in deposition of Proterozoic sedex deposits, Sudbury Basin, Ontario , 1990 .

[64]  P. Seccombe,et al.  Trace element distribution, Co:Ni ratios and genesis of the big cadia iron-copper deposit, new south wales, australia , 1987 .

[65]  G. Sabatini,et al.  A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems , 1979 .