Transparent conductive oxides: Plasmonic materials for telecom wavelengths

We show that despite of low loss, silver and gold are not suitable for a variety of nanoplasmonic applications in the infrared range, which require compact modes in single-interface plasmonic waveguides. At the same time, degenerate wide-band-gap semiconductors can serve as high-quality plasmonic materials at telecom wavelengths, combining fairly high compactness and relatively low loss. Their plasmonic properties in the near-infrared can be compared to those of gold in the visible range. The same materials can be used in a variety of non-plasmonic metamaterials applications, including transformation optics and invisibility cloaking.

[1]  G. Zhu,et al.  Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .

[2]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[3]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[4]  R. Mundle,et al.  Metal-like conductivity in transparent Al:ZnO films , 2007 .

[5]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[6]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[7]  S. Franzen,et al.  Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold , 2008 .

[8]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[9]  R. Mundle,et al.  Effects of substrate temperature on the optical and electrical properties of Al:ZnO films , 2008 .

[10]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[11]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[12]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[13]  Development of composite silver-polymer metamaterials , 2009 .

[14]  M. Noginov,et al.  Elongation of surface plasmon polariton propagation length without gain. , 2008, Optics express.

[15]  David R. Smith,et al.  Parametric oscillator based on a single-layer resonant metamaterial , 2010 .

[16]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[17]  Jacob B. Khurgin,et al.  In search of the elusive lossless metal , 2010 .

[18]  V. Shalaev,et al.  Compensating losses in negative-index metamaterials by optical parametric amplification. , 2006, Optics letters.

[19]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[20]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[21]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[22]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[23]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[24]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[25]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[26]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[27]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[28]  Z. Jacob,et al.  Controlling spontaneous emission with metamaterials. , 2010, Optics letters.

[29]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[30]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .