Transparent conductive oxides: Plasmonic materials for telecom wavelengths
暂无分享,去创建一个
Viktor A. Podolskiy | Mikhail A. Noginov | Guohua Zhu | Aswini K. Pradhan | Rajeh Mundle | Yu. A. Barnakov | Messaoud Bahoura | V. Podolskiy | M. Noginov | G. Zhu | R. Mundle | A. Pradhan | M. Bahoura | L. Gu | J. Livenere | Y. Barnakov | Lei Gu | J. E. Livenere
[1] G. Zhu,et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .
[2] J. Pendry,et al. Negative refraction makes a perfect lens , 2000, Physical review letters.
[3] V. Shalaev,et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.
[4] R. Mundle,et al. Metal-like conductivity in transparent Al:ZnO films , 2007 .
[5] I. Hamberg,et al. Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .
[6] X. Zhang,et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .
[7] S. Franzen,et al. Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold , 2008 .
[8] E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.
[9] R. Mundle,et al. Effects of substrate temperature on the optical and electrical properties of Al:ZnO films , 2008 .
[10] Vladimir M. Shalaev,et al. Searching for better plasmonic materials , 2009, 0911.2737.
[11] David R. Smith,et al. Broadband Ground-Plane Cloak , 2009, Science.
[12] T. Ebbesen,et al. Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.
[13] Development of composite silver-polymer metamaterials , 2009 .
[14] M. Noginov,et al. Elongation of surface plasmon polariton propagation length without gain. , 2008, Optics express.
[15] David R. Smith,et al. Parametric oscillator based on a single-layer resonant metamaterial , 2010 .
[16] Burke,et al. Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.
[17] Jacob B. Khurgin,et al. In search of the elusive lossless metal , 2010 .
[18] V. Shalaev,et al. Compensating losses in negative-index metamaterials by optical parametric amplification. , 2006, Optics letters.
[19] David R. Smith,et al. Controlling Electromagnetic Fields , 2006, Science.
[20] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .
[21] V. Veselago. The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .
[22] Pierre Berini,et al. Figures of merit for surface plasmon waveguides. , 2006, Optics express.
[23] A. Boltasseva,et al. A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.
[24] Harry A. Atwater,et al. Low-Loss Plasmonic Metamaterials , 2011, Science.
[25] U. Leonhardt. Optical Conformal Mapping , 2006, Science.
[26] H. Atwater,et al. Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).
[27] Alessandro Salandrino,et al. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .
[28] Z. Jacob,et al. Controlling spontaneous emission with metamaterials. , 2010, Optics letters.
[29] E. Palik. Handbook of Optical Constants of Solids , 1997 .
[30] R. Dasari,et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .