Option pricing under fast‐varying long‐memory stochastic volatility

Recent empirical studies suggest that the volatility of an underlying price process may have correlations that decay slowly under certain market conditions. In this paper, the volatility is modeled as a stationary process with long-range correlation properties in order to capture such a situation, and we consider European option pricing. This means that the volatility process is neither a Markov process nor a martingale. However, by exploiting the fact that the price process is still a semimartingale and accordingly using the martingale method, we can obtain an analytical expression for the option price in the regime where the volatility process is fast mean-reverting. The volatility process is modeled as a smooth and bounded function of a fractional Ornstein-Uhlenbeck process. We give the expression for the implied volatility, which has a fractional term structure.

[1]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[2]  José E. Figueroa-López,et al.  Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility , 2016, Finance Stochastics.

[3]  Ronnie Sircar,et al.  Short time-scale in S&P500 volatility , 2003 .

[4]  Mikkel Bennedsen,et al.  Rough electricity: a new fractal multi-factor model of electricity spot prices , 2015 .

[5]  A Rough Multi-Factor Model of Electricity Spot Prices , 2016 .

[6]  Josselin Garnier,et al.  Correction to Black-Scholes Formula Due to Fractional Stochastic Volatility , 2015, SIAM J. Financial Math..

[7]  Torben G. Andersen,et al.  Stochastic volatility , 2003 .

[8]  P. Henry-Labordère Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing , 2008 .

[9]  Tim Bollerslev,et al.  Long-term equity anticipation securities and stock market volatility dynamics , 1999 .

[10]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[11]  L. Coutin An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motion , 2007 .

[12]  Henning Omre,et al.  Simulation of Random Functions on Large Lattices , 1993 .

[13]  Gabjin Oh,et al.  Long-term memory and volatility clustering in high-frequency price changes , 2008 .

[14]  Moorad Choudhry Volatility and Correlation , 2012 .

[15]  E. Alòs,et al.  A closed-form option pricing approximation formula for a fractional Heston model , 2014 .

[16]  H. A. Rahman,et al.  Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI , 2015 .

[17]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[18]  S. Sundaresan Continuous-Time Methods in Finance: A Review and an Assessment , 2000 .

[19]  Tomas Björk,et al.  A note on Wick products and the fractional Black-Scholes model , 2005, Finance Stochastics.

[20]  Antoine Jacquier,et al.  Asymptotic Behavior of the Fractional Heston Model , 2018, SIAM J. Financial Math..

[21]  Frederi G. Viens,et al.  Stochastic volatility and option pricing with long-memory in discrete and continuous time , 2012 .

[22]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[23]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[24]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[25]  Ronnie Sircar,et al.  Maturity cycles in implied volatility , 2004, Finance Stochastics.

[26]  M. Taqqu A representation for self-similar processes , 1978 .

[27]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[28]  T. Walther,et al.  True or spurious long memory in European non-EMU currencies , 2017 .

[29]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[30]  Masaaki Fukasawa,et al.  Asymptotic analysis for stochastic volatility: martingale expansion , 2011, Finance Stochastics.

[31]  M. Rosenbaum,et al.  Rough volatility: Evidence from option prices , 2017, IISE Transactions.

[32]  Jim Gatheral,et al.  Pricing under rough volatility , 2016 .

[33]  T. Bollerslev,et al.  Risk and Return: Long-Run Relationships, Fractional Cointegration, and Return Predictability , 2013 .

[34]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[35]  F. Viens,et al.  Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models , 2015, Applied Mathematics & Optimization.

[36]  Hongzhong Zhang,et al.  Asymptotics for Rough Stochastic Volatility Models , 2017, SIAM J. Financial Math..

[37]  G. Papanicolaou,et al.  Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives , 2011 .

[38]  R. Cont Long range dependence in financial markets , 2005 .

[39]  Peter Tankov,et al.  A New Look at Short‐Term Implied Volatility in Asset Price Models with Jumps , 2012 .

[40]  Martin Rypdal,et al.  Modeling electricity spot prices using mean-reverting multifractal processes , 2012, 1201.6137.

[41]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[42]  M. Rosenbaum,et al.  Volatility is rough , 2018 .

[43]  R. Rebonato Volatility and correlation : the perfect hedger and the fox , 2004 .

[44]  Jim Gatheral,et al.  Pricing under rough volatility , 2015 .

[45]  Archil Gulisashvili,et al.  Analytically Tractable Stochastic Stock Price Models , 2012 .

[46]  G. Papanicolaou,et al.  Derivatives in Financial Markets with Stochastic Volatility , 2000 .

[47]  Sylvain Corlay,et al.  MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS , 2014 .

[48]  Jorge A. León,et al.  On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility , 2006, Finance Stochastics.

[49]  R. Mendes,et al.  The fractional volatility model: No-arbitrage, leverage and completeness , 2012, 1205.2866.

[50]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[51]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[52]  F. Comte,et al.  Affine fractional stochastic volatility models , 2012 .

[53]  I. Simonsen Measuring anti-correlations in the nordic electricity spot market by wavelets , 2001, cond-mat/0108033.

[54]  M. Fukasawa Short-time at-the-money skew and rough fractional volatility , 2015, 1501.06980.

[55]  Patrick Roome,et al.  Asymptotic Behaviour of the Fractional Heston Model , 2014 .

[56]  Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility , 2015 .

[57]  Lanouar Charfeddine True or spurious long memory in volatility: Further evidence on the energy futures markets , 2014 .

[58]  R. Mendes,et al.  The fractional volatility model: No-arbitrage, leverage and risk measures , 2010, 1007.2817.

[59]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[60]  Patrick Cheridito,et al.  Fractional Ornstein-Uhlenbeck processes , 2003 .

[61]  F. Viens,et al.  Estimation and pricing under long-memory stochastic volatility , 2012 .

[62]  R. Mendes,et al.  No-Arbitrage, Leverage and Completeness in a Fractional Volatility Model , 2015 .

[63]  E. Alòs,et al.  A fractional Heston model with , 2017 .