Hybridization of superconducting flux qubits and diamond ensembles: a route to local gates for quantum repeaters

The development of quantum networks requires stable quantum bits with which we can process, store and transport quantum information. A significant bottleneck in their performance is the ability to perform reliable local gates. It is well known that superconducting flux qubits have excellent processing ability while electron-spin nitrogen-vacancy centers in diamond are a natural memory and optical interface. Hybridization of these two systems thus presents the promise of an effective and efficient way to perform local gates. Here we report on the first step towards this: quantum state transfer between these systems.

[1]  P. Forn-Díaz,et al.  Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. , 2010, Physical review letters.

[2]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[3]  Hybrid-system approach to fault-tolerant quantum communication , 2012, 1209.3851.

[4]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[5]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[6]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[7]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.

[8]  N. Lutkenhaus,et al.  Quantum repeaters with imperfect memories: Cost and scalability , 2008, 0810.5334.

[9]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[10]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[11]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[12]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[13]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[14]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[15]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[16]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[17]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[18]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[19]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[20]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[21]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[22]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[23]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[24]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[25]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[26]  S Onoda,et al.  Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. , 2011, Physical review letters.

[27]  Xiaobo Zhu,et al.  Coherent Operation of a Gap-tunable Flux Qubit , 2010, 1008.4016.