Influence diagnostics in mixed effects logistic regression models

Correlated binary responses are commonly described by mixed effects logistic regression models. This article derives a diagnostic methodology based on the Q-displacement function to investigate local influence of the responses in the maximum likelihood estimates of the parameters and in the predictive performance of the mixed effects logistic regression model. An appropriate perturbation strategy of the probability of success is established, as a form of assessing the perturbation in the response. The diagnostic methodology is evaluated with Monte Carlo simulations. Illustrations with two real-world data sets (balanced and unbalanced) are conducted to show the potential of the proposed methodology.

[1]  Yat Sun Poon,et al.  Conformal normal curvature and assessment of local influence , 1999 .

[2]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[3]  Carolina Fabiana Svetliza,et al.  On diagnostics in log-linear negative binomial models , 2001 .

[4]  Application of Local Influence Diagnostics to the Linear Logistic Regression Models , 2004 .

[5]  Martin Crowder,et al.  Beta-binomial Anova for Proportions , 1978 .

[6]  Víctor Leiva,et al.  Birnbaum–Saunders statistical modelling: a new approach , 2014 .

[7]  José A. Díaz-García,et al.  Influence Diagnostics for Elliptical Multivariate Linear Regression Models , 2003 .

[8]  S. Raudenbush,et al.  Maximum Likelihood for Generalized Linear Models with Nested Random Effects via High-Order, Multivariate Laplace Approximation , 2000 .

[9]  F. Cysneiros,et al.  Semiparametric additive models under symmetric distributions , 2013 .

[10]  Shuangzhe Liu,et al.  Influence diagnostics in a vector autoregressive model , 2015 .

[11]  J. M. Rodríguez-Díaz,et al.  Optimal allocation of bioassays in the case of parametrized covariance functions: an application to Lung’s retention of radioactive particles , 2008 .

[12]  Víctor Leiva,et al.  Reparameterized Birnbaum-Saunders regression models with varying precision , 2016 .

[13]  Eugene Demidenko,et al.  Mixed Models: Theory and Applications with R , 2013 .

[14]  Emmanuel Lesaffre,et al.  On the effect of the number of quadrature points in a logistic random effects model: an example , 2001 .

[15]  M. Berger,et al.  Local Influence to Detect Influential Data Structures for Generalized Linear Mixed Models , 2001, Biometrics.

[16]  Miguel Angel Uribe-Opazo,et al.  Birnbaum-Saunders spatial regression models: Diagnostics and application to chemical data , 2018, Chemometrics and Intelligent Laboratory Systems.

[17]  J. Ibrahim,et al.  Perturbation selection and influence measures in local influence analysis , 2007, 0803.2986.

[18]  R. Cook Assessment of Local Influence , 1986 .

[19]  Sik-Yum Lee,et al.  Local influence for generalized linear mixed models , 2003 .

[20]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[21]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[22]  Rodney X. Sturdivant,et al.  Applied Logistic Regression: Hosmer/Applied Logistic Regression , 2005 .

[23]  Sik-Yum Lee,et al.  Perturbation Selection and Local Influence Analysis for Generalized Linear Mixed Models , 2010 .

[24]  Mithat Gönen,et al.  An assessment of estimation methods for generalized linear mixed models with binary outcomes , 2013, Statistics in medicine.

[25]  Sik-Yum Lee,et al.  Local influence for incomplete data models , 2001 .

[26]  Helton Saulo,et al.  Birnbaum–Saunders frailty regression models: Diagnostics and application to medical data , 2017, Biometrical journal. Biometrische Zeitschrift.

[27]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[28]  Juan F. Vivanco,et al.  Diagnostics in multivariate generalized Birnbaum-Saunders regression models , 2016 .

[29]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[30]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[33]  Narayanaswamy Balakrishnan,et al.  Connection between the Hadamard and matrix products with an application to matrix-variate Birnbaum-Saunders distributions , 2012, J. Multivar. Anal..

[34]  G. Molenberghs,et al.  Local influence diagnostics for generalized linear mixed models with overdispersion , 2017 .

[35]  J. Pinheiro,et al.  Efficient Laplacian and Adaptive Gaussian Quadrature Algorithms for Multilevel Generalized Linear Mixed Models , 2006 .

[36]  Jiming Jiang Linear and Generalized Linear Mixed Models and Their Applications , 2007 .

[37]  Heleno Bolfarine,et al.  Local influence in elliptical linear regression models , 1997 .

[38]  M. Uribe-Opazo,et al.  Influence diagnostics in elliptical spatial linear models , 2015 .

[39]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[40]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[41]  K. Larsen,et al.  Interpreting Parameters in the Logistic Regression Model with Random Effects , 2000, Biometrics.

[42]  Liang Xu,et al.  Deletion measures for generalized linear mixed effects models , 2006, Comput. Stat. Data Anal..

[43]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[44]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[45]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[46]  M. Uribe-Opazo,et al.  Analysis of local influence in geostatistics using Student's t-distribution , 2014 .

[47]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[48]  Alexandre B. Simas,et al.  Influence diagnostics in a general class of beta regression models , 2011 .

[49]  Shuangzhe Liu,et al.  On diagnostics in conditionally heteroskedastic time series models under elliptical distributions , 2004, Journal of Applied Probability.

[50]  S. O. Nyangoma,et al.  Identifying influential multinomial observations by perturbation , 2006, Comput. Stat. Data Anal..

[51]  Shuangzhe Liu,et al.  On local influence for elliptical linear models , 2000 .

[52]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.