An Extended Three-Control-Volume Theory for Circumferentially-Grooved Liquid Seals

Circumferentially-grooved seals are used in centrifugal pumps to reduce leakage flow. They can also have a significant impact on pump rotordynamic characteristics. Florjancic (1990) developed an analysis for leakage and rotordynamic coefficients, using a partition of the seal into three control volumes. This paper presents a new theory, based on an extension of Florjancic's work (1990) for circumferentially-grooved liquid seals. The current theory differs from Florjancic's analysis in the retention of transfer momentum terms and the introduction of diverging flow in the through-flow section within a seal groove. Validation of the new analysis is achieved through a comparison with existing experimental data taken from Kilgore (1988), and Florjancic (1990). Theoretical results are reasonable and consistent ; i.e., a modification in the seal parameters induces a correct evolution of the rotordynamic coefficients. Direct and cross-coupled stiffness coefficients are slightly underpredicted, whereas the direct damping coefficient is underpredicted within 40 percent. Leakage flow predictions are very good.