Empirical‐distribution‐function goodness‐of‐fit tests for discrete models

We present a simple framework for studying empirical-distribution-function goodness-of-fit tests for discrete models. A key tool is a weak-convergence result for an estimated discrete empirical process, regarded as a random element in some suitable sequence space. Special emphasis is given to the problem of testing for a Poisson model and for the geometric distribution. Simulations show that parametric bootstrap versions of the tests maintain a nominal level of significance very closely even for small samples where reliance upon asymptotic critical values is doubtful.

[1]  N. Henze,et al.  An adaptive omnibus test for exponentiality , 1992 .

[2]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[3]  Norbert Henze,et al.  A new flexible class of omnibus tests for exponentiality , 1992 .

[4]  A. Pettitt,et al.  The Kolmogorov-Smirnov Goodness-of-Fit Statistic with Discrete and Grouped Data , 1977 .

[5]  S. Horn,et al.  Goodness-of-fit tests for discrete data: a review and an application to a health impairment scale. , 1977, Biometrics.

[6]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[7]  Ludwig Baringhaus,et al.  A goodness of fit test for the Poisson distribution based on the empirical generating function , 1992 .

[8]  Norbert Henze,et al.  A class of invariant consistent tests for multivariate normality , 1990 .

[9]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[10]  Constance L. Wood,et al.  Large Sample Results for Kolmogorov-Smirnov Statistics for Discrete Distributions , 1978 .

[11]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[12]  V. Pérez-Abreu,et al.  Use of an empirical probability generating function for testing a Poisson model , 1993 .

[13]  N. Henze,et al.  A consistent test for multivariate normality based on the empirical characteristic function , 1988 .

[14]  C. Oprian,et al.  On the KOLMOGOROV‐SMIRNOV Test for the POISSON Distribution with Unknown Mean , 1979 .

[15]  W. Conover A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions , 1972 .

[16]  T. W. Epps,et al.  A test for normality based on the empirical characteristic function , 1983 .

[17]  Miklós Csörgő,et al.  Weak approximations of the empirical process when parameters are estimated , 1979 .

[18]  R. Rueda sup esup,et al.  Goodness of fit for the poisson distribution based on the probability generating function , 1991 .

[19]  Ludwig Baringhaus,et al.  A class of consistent tests for exponentiality based on the empirical Laplace transform , 1991 .