On a saddle point problem arising from magneto-elastic coupling
暂无分享,去创建一个
[1] Larry L. Schumaker,et al. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory , 2007 .
[2] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[3] Barbara D. Maccluer. Elementary Functional Analysis , 2008 .
[4] K. Hutter,et al. Field matter interactions in thermoelastic solids , 1978 .
[5] Ieee Standards Board,et al. IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature , 1973, IEEE Transactions on Sonics and Ultrasonics.
[6] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[7] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[8] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[9] R. Powell. Symmetry, group theory, and the physical properties of crystals , 2010 .
[10] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[11] Mario Bunge,et al. Classical Field Theories , 1967 .
[12] G. Engdahl. Handbook of Giant Magnetostrictive Materials , 1999 .
[13] A. Bower. Applied Mechanics of Solids , 2009 .
[14] P. Shiu. Elementary functional analysis , by Barbara D. MacCluer. Pp. 207. £29.99. 2009. ISBN-978-0-387-85528-8 (Springer). , 2010, The Mathematical Gazette.
[15] Y. Pao. IV – Electromagnetic Forces in Deformable Continua , 1978 .
[16] D. Braess. Stability of saddle point problems with penalty , 1996 .
[17] W. Voigt. Lehrbuch der kristallphysik : (mit Ausschluss der Kristalloptik) , 1910 .
[18] Christophe Paul,et al. The use of a reduced vector potential $A_{r}$ formulation for the calculation of iron induced field errors , 1999 .