Surrogate Models for Uncertainty Propagation and Sensitivity Analysis
暂无分享,去创建一个
[1] Bradley P. Carlin,et al. Bayesian Methods for Data Analysis , 2008 .
[2] Olivier Roustant,et al. Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..
[3] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[4] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[5] Cosmin Safta,et al. Fault Resilient Domain Decomposition Preconditioner for PDEs , 2015, SIAM J. Sci. Comput..
[6] A. Saltelli,et al. Making best use of model evaluations to compute sensitivity indices , 2002 .
[7] Laura Painton Swiler,et al. Response Surface (Meta-model) Methods and Applications , 2005 .
[8] Alireza Doostan,et al. A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..
[9] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[10] D. Xiu. Fast numerical methods for stochastic computations: A review , 2009 .
[11] Balasubramaniam Natarajan,et al. A general framework for robust compressive sensing based nonlinear regression , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).
[12] H. Rabitz,et al. High Dimensional Model Representations , 2001 .
[13] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[14] Olivier P. Le Maître,et al. Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..
[15] Gianluca Iaccarino,et al. Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..
[16] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[17] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[18] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[19] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[20] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[21] Holger Rauhut,et al. Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.
[22] O P Le Maître,et al. Spectral stochastic uncertainty quantification in chemical systems , 2004 .
[23] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[24] H. Acquah,et al. A bootstrap approach to evaluating the performance of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in selection of an asymmetric price relationship. , 2012 .
[25] S. Isukapalli,et al. Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.
[26] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[27] Mort Webster,et al. Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model , 1996 .
[28] Habib N. Najm,et al. A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .
[29] James O. Berger,et al. Ockham's Razor and Bayesian Analysis , 1992 .
[30] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..
[31] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[32] H. Rabitz,et al. General foundations of high‐dimensional model representations , 1999 .
[33] E. Candès,et al. Sparsity and incoherence in compressive sampling , 2006, math/0611957.
[34] Stefano Tarantola,et al. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .
[35] W. Gilks. Markov Chain Monte Carlo , 2005 .
[36] N. Wiener. The Homogeneous Chaos , 1938 .
[37] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[38] Raphael T. Haftka,et al. Surrogate-based Analysis and Optimization , 2005 .
[39] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[40] Sylvain Arlot,et al. A survey of cross-validation procedures for model selection , 2009, 0907.4728.
[41] Peter E. Thornton,et al. DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .
[42] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[43] Kyle A. Gallivan,et al. A compressed sensing approach for partial differential equations with random input data , 2012 .
[44] Anthony O'Hagan,et al. Diagnostics for Gaussian Process Emulators , 2009, Technometrics.
[45] Alan Genz,et al. Testing multidimensional integration routines , 1984 .
[46] Khachik Sargsyan,et al. Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks via Adaptive Data Partitioning , 2009, SIAM J. Sci. Comput..
[47] Emanuele Borgonovo,et al. Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..
[48] Dani Gamerman,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .
[49] H. Rabitz,et al. Efficient input-output model representations , 1999 .
[50] Aggelos K. Katsaggelos,et al. Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.
[51] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[52] Joe Wiart,et al. A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..
[53] G. Casella,et al. The Bayesian Lasso , 2008 .
[54] D. Xiu. Efficient collocational approach for parametric uncertainty analysis , 2007 .
[55] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[56] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[57] Cosmin Safta,et al. Multiparameter Spectral Representation of Noise-Induced Competence in Bacillus Subtilis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[58] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[59] Cosmin Safta,et al. Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..
[60] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[61] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[62] Paola Annoni,et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..
[63] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[64] Ilya M. Sobol,et al. Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..
[65] Bruno Sudret,et al. Meta-models for structural reliability and uncertainty quantification , 2012, 1203.2062.
[66] Nilay Shah,et al. Metamodelling with independent and dependent inputs , 2013, Comput. Phys. Commun..
[67] Roger Ghanem,et al. Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .
[68] Xun Huan,et al. Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..
[69] J. N. Kapur. Maximum-entropy models in science and engineering , 1992 .
[70] Habib N. Najm,et al. Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..
[71] M. Jansen. Analysis of variance designs for model output , 1999 .
[72] H. Najm,et al. Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .