Surrogate Models for Uncertainty Propagation and Sensitivity Analysis

[1]  Bradley P. Carlin,et al.  Bayesian Methods for Data Analysis , 2008 .

[2]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[5]  Cosmin Safta,et al.  Fault Resilient Domain Decomposition Preconditioner for PDEs , 2015, SIAM J. Sci. Comput..

[6]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[7]  Laura Painton Swiler,et al.  Response Surface (Meta-model) Methods and Applications , 2005 .

[8]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[9]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[10]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[11]  Balasubramaniam Natarajan,et al.  A general framework for robust compressive sensing based nonlinear regression , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[12]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[13]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[14]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[15]  Gianluca Iaccarino,et al.  Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..

[16]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[17]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[18]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[21]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[22]  O P Le Maître,et al.  Spectral stochastic uncertainty quantification in chemical systems , 2004 .

[23]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[24]  H. Acquah,et al.  A bootstrap approach to evaluating the performance of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in selection of an asymmetric price relationship. , 2012 .

[25]  S. Isukapalli,et al.  Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[26]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[27]  Mort Webster,et al.  Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model , 1996 .

[28]  Habib N. Najm,et al.  A multigrid solver for two-dimensional stochastic diffusion equations , 2003 .

[29]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[30]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[31]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[32]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[33]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[34]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[35]  W. Gilks Markov Chain Monte Carlo , 2005 .

[36]  N. Wiener The Homogeneous Chaos , 1938 .

[37]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[38]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[39]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[40]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[41]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[42]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[43]  Kyle A. Gallivan,et al.  A compressed sensing approach for partial differential equations with random input data , 2012 .

[44]  Anthony O'Hagan,et al.  Diagnostics for Gaussian Process Emulators , 2009, Technometrics.

[45]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[46]  Khachik Sargsyan,et al.  Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks via Adaptive Data Partitioning , 2009, SIAM J. Sci. Comput..

[47]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[48]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[49]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[50]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[51]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[52]  Joe Wiart,et al.  A new surrogate modeling technique combining Kriging and polynomial chaos expansions - Application to uncertainty analysis in computational dosimetry , 2015, J. Comput. Phys..

[53]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[54]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[55]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[56]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[57]  Cosmin Safta,et al.  Multiparameter Spectral Representation of Noise-Induced Competence in Bacillus Subtilis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[58]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[59]  Cosmin Safta,et al.  Uncertainty Quantification given Discontinuous Model Response and a Limited Number of Model Runs , 2012, SIAM J. Sci. Comput..

[60]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[61]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[62]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[63]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[64]  Ilya M. Sobol,et al.  Theorems and examples on high dimensional model representation , 2003, Reliab. Eng. Syst. Saf..

[65]  Bruno Sudret,et al.  Meta-models for structural reliability and uncertainty quantification , 2012, 1203.2062.

[66]  Nilay Shah,et al.  Metamodelling with independent and dependent inputs , 2013, Comput. Phys. Commun..

[67]  Roger Ghanem,et al.  Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions , 2008 .

[68]  Xun Huan,et al.  Simulation-based optimal Bayesian experimental design for nonlinear systems , 2011, J. Comput. Phys..

[69]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[70]  Habib N. Najm,et al.  Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical Systems , 2007, SIAM J. Sci. Comput..

[71]  M. Jansen Analysis of variance designs for model output , 1999 .

[72]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .