The influence of lutetium-doping effect on diffusional creep in polycrystalline Al2O3

[1]  Jeffrey M. Rickman,et al.  Effect of Yttrium and Lanthanum on the Tensile Creep Behavior of Aluminum Oxide , 2005 .

[2]  C. Carry,et al.  Multiscale aspects of the influence of yttrium on microstructure, sintering and creep of alumina , 2002 .

[3]  Y. Ikuhara,et al.  Effect of Chemical Bonding State on High-temperature Plastic Flow Behavior in Fine-grained, Polycrystalline Cation-doped Al2O3 , 2002 .

[4]  Y. Ikuhara,et al.  Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3 , 2002 .

[5]  R. M. Cannon,et al.  Cation Segregation in an Oxide Ceramic with Low Solubility: Yttrium Doped α-Alumina , 2002 .

[6]  Y. Ikuhara,et al.  A change in the chemical bonding strength and high-temperature creep resistance in Al2O3 with lanthanoid oxide doping , 2002 .

[7]  Y. Ikuhara,et al.  Transient creep in fine-grained polycrystalline Al_2O_3 with Lu^3+ ion segregation at the grain boundaries , 2001 .

[8]  M. Harmer,et al.  Structural features of Y-saturated and supersaturated grain boundaries in alumina , 2000 .

[9]  M. Harmer,et al.  Role of segregating dopants on the improved creep resistance of aluminum oxide , 1999 .

[10]  Y. Ikuhara,et al.  Improvement of creep resistance in polycrystalline Al2O3 by Lu-doping , 1999 .

[11]  Y. Ikuhara,et al.  High-temperature creep resistance in lanthanoid ion-doped polycrystalline Al2O3 , 1999 .

[12]  H. Yoshida,et al.  Transient Creep Associated with Grain Boundary Sliding in Fine-Grained Single-Phase Al2O3 , 1998 .

[13]  Y. Ikuhara,et al.  High-temperature Creep Resistance in Rare-earth-doped, Fine-grained Al_2O_3 , 1998 .

[14]  Y. Ikuhara,et al.  Improvement of high-temperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain boundaries , 1997 .

[15]  C. Monty,et al.  Self-diffusion in α‒Al2O3. II. Oxygen diffusion in ‘undoped’ single crystals , 1996 .

[16]  W. Świątnicki,et al.  Grain boundary structure and intergranular segregation in Al2O3 , 1995 .

[17]  B. Lesage,et al.  Self-diffusion in α-Al2O3 I. Aluminium diffusion in single crystals , 1994 .

[18]  C. Carry,et al.  Dislocation activity and differences between tensile and compressive creep of yttria doped alumina , 1993 .

[19]  A. Pelton,et al.  Coupled thermodynamic-phase diagram assessment of the rare earth oxide-aluminium oxide binary systems , 1992 .

[20]  A. Chokshi An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina , 1990 .

[21]  A. Mukherjee,et al.  A model for the rate-controlling mechanism in superplasticity , 1980 .

[22]  R. M. Cannon,et al.  Plastic Deformation of Fine‐Grained Alumina (Al2O3): I, Interface‐Controlled Diffusional Creep , 1980 .

[23]  R. C. Gifkins Grain-boundary sliding and its accommodation during creep and superplasticity , 1976 .

[24]  Amiya K. Mukherjee,et al.  The rate controlling mechanism in superplasticity , 1971 .

[25]  T. Langdon Grain boundary sliding as a deformation mechanism during creep , 1970 .

[26]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[27]  W. D. Kingery,et al.  SELF-DIFFUSION OF OXYGEN IN SINGLE CRYSTAL AND POLYCRYSTALLINE ALUMINUM OXIDE , 1960 .

[28]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[29]  W. E. Lee,et al.  Structural and electron diffraction data for sapphire (α-al2o3) , 1985 .

[30]  R. M. Cannon,et al.  Plastic Deformation of Fine‐Grained Alumina (Al2O3): II, Basal Slip and Nonaccommodated Grain‐Boundary Sliding , 1980 .

[31]  J. Burke,et al.  Ultrafine-Grain ceramics , 1970 .