Application of Time-Resolved Multi-Sine Impedance Spectroscopy for Lithium-Ion Battery Characterization

Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for the characterization of electrical, thermal and aging behavior of batteries. In this paper, an EIS measurement technique to acquire impedance spectra with high time resolution is examined, which can be used to gather impedance data during dynamic operating conditions. A theoretical analysis of the used multi-sine excitation signals is performed in detail and a practical measurement system is presented and validated. Afterwards, EIS measurements during the charging process of a lithium-ion battery are performed and discussed.

[1]  Manfred R. Schroeder,et al.  Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[2]  E. Ivers-Tiffée,et al.  Approximability of Impedance Spectra By RC Elements and Implications for Impedance Analysis , 2015 .

[3]  Norbert Wagner,et al.  Validation and evaluation of electrochemical impedance spectra of systems with states that change with time , 2001 .

[4]  T. Kolda,et al.  A generating set direct search augmented Lagrangian algorithm for optimization with a combination of general and linear constraints , 2006 .

[5]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[6]  Jo¨rg Illig,et al.  Physically based Impedance Modelling of Lithium-Ion Cells , 2014 .

[7]  J. Schoukens,et al.  Crest-factor minimization using nonlinear Chebyshev approximation methods , 1991 .

[8]  Andrea Marongiu,et al.  Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO 4 |Graphite cylindrical cells , 2017 .

[9]  D. Sauer,et al.  A nonlinear impedance standard , 2013 .

[10]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[11]  Bernard A. Boukamp,et al.  A Linear Kronig‐Kramers Transform Test for Immittance Data Validation , 1995 .

[12]  J. Schoukens,et al.  Peak factor minimization of input and output signals of linear systems , 1988 .

[13]  B. Carkhuff,et al.  Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells , 2011 .

[14]  Michael A. Danzer,et al.  Influence of cell design on impedance characteristics of cylindrical lithium-ion cells: A model-based assessment from electrode to cell level , 2017 .

[15]  Tomáš Kazda,et al.  Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy , 2018 .

[16]  Dirk Uwe Sauer,et al.  Impedanzspektroskopie an Batterien unter besonderer Berücksichtigung von Batteriesensoren für den Feldeinsatz , 2013 .

[17]  Nigel P. Brandon,et al.  Online Measurement of Battery Impedance Using Motor Controller Excitation , 2014, IEEE Transactions on Vehicular Technology.

[18]  P. Annus,et al.  Crest factor optimization of the multisine waveform for bioimpedance spectroscopy. , 2014, Physiological measurement.

[19]  Mikhail Shamonin,et al.  State-of-Charge Monitoring by Impedance Spectroscopy during Long-Term Self-Discharge of Supercapacitors and Lithium-Ion Batteries , 2018, Batteries.

[20]  Gerd Vandersteen,et al.  Optimal multisine excitation design for broadband electrical impedance spectroscopy , 2011 .

[21]  James W. Beauchamp,et al.  A genetic algorithm-based method for synthesis of low peak amplitude signals , 1996 .

[22]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[23]  Yoshinao Hoshi,et al.  Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery , 2016 .

[24]  E. Ivers-Tiffée,et al.  A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests , 2014 .

[25]  Robert Dominko,et al.  The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc , 2008 .

[26]  J. Schmidt,et al.  Verfahren zur Charakterisierung und Modellierung von Lithium-Ionen Zellen , 2013 .

[27]  Rik Pintelon,et al.  Odd random phase multisine EIS as a detection method for the onset of corrosion of coated steel , 2010 .

[28]  T. Osaka,et al.  Ac impedance analysis of lithium ion battery under temperature control , 2012 .

[29]  Johan Schoukens,et al.  Survey of excitation signals for FFT based signal analyzers , 1988 .

[30]  Michikazu Hara,et al.  Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries , 1995 .

[31]  D. Howey,et al.  Battery internal temperature estimation by combined impedance and surface temperature measurement , 2014 .

[32]  Mart Min,et al.  Recent Advances in Crest Factor Minimization of Multisine , 2017 .

[33]  Digby D. Macdonald,et al.  Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity , 1990 .

[34]  Zhaosheng Teng,et al.  An improved crest factor minimization algorithm to synthesize multisines with arbitrary spectrum , 2015, Physiological measurement.

[35]  Jason T. Stauth,et al.  Online spectroscopic diagnostics implemented in an efficient battery management system , 2015, 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL).

[36]  Roger A. Green,et al.  Optimization of multisine excitations for receiver undersampling , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.