Mitochondrial-nuclear communications.

Mitochondria cannot be made de novo but replicate by a mechanism of recruitment of new proteins, which are added to preexisting subcompartments. Although mitochondria have their own DNA, more than 98% of the total protein complement of the organelle is encoded by the nuclear genome. Mitochondrial biogenesis requires a coordination of expression of two genomes and therefore cross talk between the nucleus and mitochondria. In mammals, regulation of mitochondrial biogenesis and proliferation is influenced by external factors, such as nutrients, hormones, temperature, exercise, hypoxia, and aging. This complexity points to the existence of a coordinated and tightly regulated network connecting different pathways. Communications are also required for eliciting mitochondrial responses to specific stress pathways. This review covers the mechanisms of mitochondrial biogenesis and the way cells respond to external signals to maintain mitochondrial function and cellular homeostasis.

[1]  N. Avadhani,et al.  Mitochondrial signaling: the retrograde response. , 2004, Molecular cell.

[2]  M. Ryan,et al.  Role of chaperones in the biogenesis and maintenance of the mitochondrion , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  E. Araki,et al.  Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. , 2006, Diabetes.

[4]  Jiandie D. Lin,et al.  PGC-1β in the Regulation of Hepatic Glucose and Energy Metabolism* , 2003, Journal of Biological Chemistry.

[5]  K. G. Hales,et al.  Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase , 1997, Cell.

[6]  D. J. Naylor,et al.  The role of molecular chaperones in mitochondrial protein import and folding. , 1997, International review of cytology.

[7]  M. Rojo,et al.  Mitochondrial dynamics in cell life and death , 2006, Cell Death and Differentiation.

[8]  J. Rømer,et al.  The diabetes-prone BB rat carries a frameshift mutation in Ian4, a positional candidate of Iddm1. , 2002, Diabetes.

[9]  C. Koehler,et al.  Redox pathways of the mitochondrion. , 2006, Antioxidants & redox signaling.

[10]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[11]  S. Oyadomari,et al.  Roles of CHOP/GADD153 in endoplasmic reticulum stress , 2004, Cell Death and Differentiation.

[12]  Jiandie D. Lin,et al.  Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor γ Coactivators 1α and 1β (PGC-1α and PGC-1β) in Muscle Cells* , 2003, Journal of Biological Chemistry.

[13]  T. Mitsui,et al.  Parkin affects mitochondrial function and apoptosis in neuronal and myogenic cells. , 2006, Biochemical and biophysical research communications.

[14]  Nicholas J. Hoogenraad,et al.  Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70 , 2003, Cell.

[15]  R. Scarpulla,et al.  PGC-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells , 2001, Molecular and Cellular Biology.

[16]  E. Nisoli,et al.  Nitric oxide and mitochondrial biogenesis , 2006, Journal of Cell Science.

[17]  R. Morimoto,et al.  Cells in stress: transcriptional activation of heat shock genes. , 1993, Science.

[18]  G. Pesole,et al.  Energy biogenesis: one key for coordinating two genomes. , 2005, Trends in genetics : TIG.

[19]  W. Voos,et al.  Molecular chaperones as essential mediators of mitochondrial biogenesis. , 2002, Biochimica et biophysica acta.

[20]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[21]  Xiaozhong Wang,et al.  CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. , 1998, Genes & development.

[22]  D. Ginty,et al.  Mitochondrial Cyclic AMP Response Element-binding Protein (CREB) Mediates Mitochondrial Gene Expression and Neuronal Survival* , 2005, Journal of Biological Chemistry.

[23]  S. Ohta,et al.  MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction , 2005, Journal of Cell Science.

[24]  J. Haber,et al.  Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths , 1999, Current Biology.

[25]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[26]  J. I. Izpisúa Belmonte,et al.  Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Gilkerson,et al.  The cristal membrane of mitochondria is the principal site of oxidative phosphorylation , 2003, FEBS letters.

[28]  D. Hood,et al.  Coordination of metabolic plasticity in skeletal muscle , 2006, Journal of Experimental Biology.

[29]  Robert G Parton,et al.  H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Ryan,et al.  Import and assembly of proteins into mitochondria of mammalian cells. , 2002, Biochimica et biophysica acta.

[31]  G. Amuthan,et al.  Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells , 2002, Oncogene.

[32]  C. Lelliott,et al.  Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. , 2003, The Biochemical journal.

[33]  Guillaume Adelmant,et al.  Activation of PPARγ coactivator-1 through transcription factor docking , 1999 .

[34]  M. Ashby,et al.  Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport , 2001, The EMBO journal.

[35]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[36]  Wilhelm Haas,et al.  Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1 , 2005, Nature.

[37]  J. Auwerx,et al.  PGC-1α Turbocharging mitochondria , 2004, Cell.

[38]  R. Scarpulla,et al.  Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. , 2004, Genes & development.

[39]  P. Puigserver,et al.  Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Dietmeier,et al.  Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins , 1998, Nature.

[41]  Peter Walter,et al.  Functional and Genomic Analyses Reveal an Essential Coordination between the Unfolded Protein Response and ER-Associated Degradation , 2000, Cell.

[42]  J. Hayashi,et al.  Inter-mitochondrial complementation: Mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA , 2001, Nature Medicine.

[43]  J. Gustafsson,et al.  Glucocorticoid Signaling Is Perturbed by the Atypical Orphan Receptor and Corepressor SHP* , 2002, The Journal of Biological Chemistry.

[44]  E. Clementi,et al.  Mitochondrial Biogenesis in Mammals: The Role of Endogenous Nitric Oxide , 2003, Science.

[45]  D. Stojanovski,et al.  Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology , 2004, Journal of Cell Science.

[46]  D. Kressler,et al.  Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Zhijian J. Chen,et al.  Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3 , 2005, Cell.

[48]  S. Smaili,et al.  Mitochondria in Ca2+ Signaling and Apoptosis , 2000, Journal of bioenergetics and biomembranes.

[49]  Christoph Handschin,et al.  Hyperlipidemic Effects of Dietary Saturated Fats Mediated through PGC-1β Coactivation of SREBP , 2005, Cell.

[50]  P. Puigserver,et al.  A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis , 1998, Cell.

[51]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[52]  J. V. Falvo,et al.  Structure and Function of the Interferon-β Enhanceosome , 1998 .

[53]  P. Frachon,et al.  Organization and dynamics of human mitochondrial DNA , 2004, Journal of Cell Science.

[54]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[55]  E. Shoubridge Mitochondrial DNA diseases: Histological and cellular studies , 1994, Journal of bioenergetics and biomembranes.

[56]  Shizuo Akira,et al.  The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses , 2004, Nature Immunology.

[57]  M. Palacín,et al.  The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. , 2005, Human molecular genetics.

[58]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[59]  D. Kelly,et al.  Peroxisome Proliferator-activated Receptor α (PPARα) Signaling in the Gene Regulatory Control of Energy Metabolism in the Normal and Diseased Heart , 2002 .

[60]  Jiandie D. Lin,et al.  An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Gulbis,et al.  Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. , 2006, Molecular cell.

[62]  J. Satrústegui,et al.  New mitochondrial carriers: an overview , 2005, Cellular and Molecular Life Sciences CMLS.

[63]  C. Kahn,et al.  Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKClambda/zeta. , 2006, Cell metabolism.

[64]  M. Lazarou,et al.  Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. , 2006, Journal of molecular biology.

[65]  Rick B. Vega,et al.  The Coactivator PGC-1 Cooperates with Peroxisome Proliferator-Activated Receptor α in Transcriptional Control of Nuclear Genes Encoding Mitochondrial Fatty Acid Oxidation Enzymes , 2000, Molecular and Cellular Biology.

[66]  J. Zierath,et al.  Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism , 2003, The Journal of Biological Chemistry.

[67]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[68]  H. McBride,et al.  Mitochondria: More Than Just a Powerhouse , 2006, Current Biology.

[69]  C. Thompson,et al.  PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. , 2006, Molecular cell.

[70]  Y. Yoon,et al.  Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Stojanovski,et al.  Mitochondrial morphology and distribution in mammalian cells , 2006, Biological chemistry.

[72]  Jiandie D. Lin,et al.  Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. , 2001, Molecular cell.

[73]  Shinsei Minoshima,et al.  Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase , 2000, Nature Genetics.

[74]  R. A. Butow,et al.  A Transcriptional Switch in the Expression of Yeast Tricarboxylic Acid Cycle Genes in Response to a Reduction or Loss of Respiratory Function , 1999, Molecular and Cellular Biology.

[75]  J. Kemper,et al.  Ligand-activated Pregnane X Receptor Interferes with HNF-4 Signaling by Targeting a Common Coactivator PGC-1α , 2004, Journal of Biological Chemistry.

[76]  N. Pfanner,et al.  Hsp70 proteins in protein translocation. , 2001, Advances in protein chemistry.

[77]  D. Stojanovski,et al.  Dissection of the Mitochondrial Import and Assembly Pathway for Human Tom40* , 2005, Journal of Biological Chemistry.

[78]  G. Shulman,et al.  AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Bassel-Duby,et al.  Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK , 2002, Science.

[80]  R. Rizzuto,et al.  Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. , 2004, Molecular cell.

[81]  Bruce M. Spiegelman,et al.  Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction , 2003, Nature.

[82]  R. Jope,et al.  Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3‐kinase activation , 2003, Journal of neurochemistry.

[83]  Yan-hong Guo,et al.  Dysregulation of HSG triggers vascular proliferative disorders , 2004, Nature Cell Biology.

[84]  M. Ryan,et al.  A mitochondrial specific stress response in mammalian cells , 2002, The EMBO journal.

[85]  M. Tohyama,et al.  Transmission of cell stress from endoplasmic reticulum to mitochondria , 2002, The Journal of cell biology.

[86]  P. Puigserver,et al.  Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. , 2000, Molecular cell.

[87]  A. Russell,et al.  Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise , 2005, The Journal of physiology.

[88]  N. Holbrook,et al.  Physical and Functional Association between GADD153 and CCAAT/Enhancer-binding Protein β during Cellular Stress* , 1996, The Journal of Biological Chemistry.

[89]  W. Ansorge,et al.  Evidence for a novel mitochondria-to-nucleus signalling pathway in respiring cells lacking i-AAA protease and the ABC-transporter Mdl1. , 2006, Gene.

[90]  P. Puigserver,et al.  Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Chan,et al.  Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction* , 2005, Journal of Biological Chemistry.

[92]  D. Chan Mitochondria: Dynamic Organelles in Disease, Aging, and Development , 2006, Cell.

[93]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[94]  Sarah Calvo,et al.  Systematic identification of human mitochondrial disease genes through integrative genomics , 2006, Nature Genetics.

[95]  E. Bahassi,et al.  Adaptive thermogenesis: Orchestrating mitochondrial biogenesis , 1999, Current Biology.

[96]  D. Ron,et al.  CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. , 1992, Genes & development.

[97]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[98]  L. Nolte,et al.  Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1 , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[99]  P. Puigserver,et al.  Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. , 2003, Endocrine reviews.

[100]  R. Scarpulla Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. , 2002, Gene.

[101]  M. Palacín,et al.  Evidence for a Mitochondrial Regulatory Pathway Defined by Peroxisome Proliferator–Activated Receptor-γ Coactivator-1α, Estrogen-Related Receptor-α, and Mitofusin 2 , 2006, Diabetes.

[102]  Jiandie D. Lin,et al.  Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1α Null Mice , 2004, Cell.

[103]  R. Garesse,et al.  Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. , 2001, Gene.

[104]  K. M. Popov,et al.  Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. , 1998, The Biochemical journal.

[105]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[106]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[107]  A. Ohtake,et al.  Biochemical and molecular diagnosis of mitochondrial respiratory chain disorders. , 2004, Biochimica et biophysica acta.

[108]  M. Pozo,et al.  Mitochondrial reactive oxygen species and Ca2+ signaling. , 2006, American journal of physiology. Cell physiology.

[109]  J. Holloszy,et al.  Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[110]  B. Spiegelman,et al.  Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. , 2003, Molecular cell.

[111]  W. Kraus,et al.  PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle , 2004 .

[112]  A Miyawaki,et al.  Beat‐to‐beat oscillations of mitochondrial [Ca2+] in cardiac cells , 2001, The EMBO journal.

[113]  D. Chan Mitochondrial fusion and fission in mammals. , 2006, Annual review of cell and developmental biology.

[114]  I. Izquierdo,et al.  Cyclic AMP‐Responsive Element Binding Protein in Brain Mitochondria , 1999, Journal of neurochemistry.

[115]  R. Wiesner,et al.  Regulation and Co‐Ordination of Nuclear Gene Expression During Mitochondrial Biogenesis , 2003, Experimental physiology.

[116]  J. Sambrook,et al.  A transmembrane protein with a cdc2+ CDC28 -related kinase activity is required for signaling from the ER to the nucleus , 1993, Cell.

[117]  S. Dimauro,et al.  Mitochondrial respiratory-chain diseases. , 2003, The New England journal of medicine.

[118]  Maithreyan Srinivasan,et al.  Mmm1p, a Mitochondrial Outer Membrane Protein, Is Connected to Mitochondrial DNA (Mtdna) Nucleoids and Required for Mtdna Stability , 2001, The Journal of cell biology.

[119]  D. Wallace A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine , 2005, Annual review of genetics.

[120]  Z. Zhai,et al.  VISA Is an Adapter Protein Required for Virus-Triggered IFN-β Signaling , 2005 .

[121]  Frank A Witzmann,et al.  Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. , 2006, Biochemistry.

[122]  N. Pfanner,et al.  The Protein Import Machinery of Mitochondria* , 2004, Journal of Biological Chemistry.

[123]  R. Youle,et al.  Mitochondrial fission in apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[124]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[125]  F. Urano,et al.  Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones , 2004, Journal of Cell Science.

[126]  D. Ron,et al.  Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase , 1999, Nature.

[127]  S. Corvera,et al.  Ian4 is required for mitochondrial integrity and T cell survival , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[128]  C. Martínez-A,et al.  Bcl-2 differentially targets K-, N-, and H-Ras to mitochondria in IL-2 supplemented or deprived cells: Implications in prevention of apoptosis , 1999, Oncogene.

[129]  P. Srere The infrastructure of the mitochondrial matrix , 1980 .

[130]  Jiandie D. Lin,et al.  Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. , 2004, Genes & development.

[131]  Christoph Handschin,et al.  Metabolic control through the PGC-1 family of transcription coactivators. , 2005, Cell metabolism.

[132]  T. Saheki,et al.  Citrin and aralar1 are Ca2+‐stimulated aspartate/glutamate transporters in mitochondria , 2001, The EMBO journal.

[133]  P. Cartwright,et al.  Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. , 1996, European journal of biochemistry.

[134]  Guillaume Adelmant,et al.  Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 , 2001, Nature.

[135]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[136]  Michael Courtois,et al.  PGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis , 2005, PLoS Biology.

[137]  E. Shoubridge,et al.  Mitochondrial biogenesis: which part of "NO" do we understand? , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[138]  D. Kressler,et al.  The PGC-1-related Protein PERC Is a Selective Coactivator of Estrogen Receptor α* , 2002, The Journal of Biological Chemistry.

[139]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.