The rank invariant stability via interleavings

A lower bound for the interleaving distance on persistence modules is given in terms of matching distance of rank invariants. This offers an alternative proof of the stability of rank invariants. As a further contribution, also the internal stability of the rank invariant is proved in terms of interleavings.

[1]  Daniela Giorgi,et al.  Robustness and Modularity of 2-Dimensional Size Functions - An Experimental Study , 2011, CAIP.

[2]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[3]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[4]  Guo-Wei Wei,et al.  Multidimensional persistence in biomolecular data , 2014, J. Comput. Chem..

[5]  Daniela Giorgi,et al.  PHOG: Photometric and geometric functions for textured shape retrieval , 2013, SGP '13.

[6]  Daniel L. Rubin,et al.  Classification of hepatic lesions using the matching metric , 2012, Comput. Vis. Image Underst..

[7]  Andrea Cerri,et al.  Hausdorff Stability of Persistence Spaces , 2016, Found. Comput. Math..

[8]  Ulrich Bauer,et al.  Induced Matchings of Barcodes and the Algebraic Stability of Persistence , 2013, SoCG.

[9]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[10]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..

[11]  Afra Zomorodian,et al.  Computing Multidimensional Persistence , 2010, J. Comput. Geom..

[12]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[13]  Daniela Giorgi,et al.  Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.

[14]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.