Statistical model for characterizing random microstructure of inclusion–matrix composites

The variation of arrangement of micro-structural entities (i.e. inclusions) influences local properties of composites. Thus, there is a need to classify and quantify different micro-structural arrangements. In other words, it is necessary to identify descriptors that characterize the spatial dispersion of inclusions in random composites. On the other hand, Delaunay triangulation associated with an arbitrary set of points in a plane is unique which makes it a good candidate for generating such descriptors. This paper presents a framework for establishing a methodology for characterizing microstructure morphology in random composites and correlating that to local stress field. More specifically, in this paper we address three main issues: correlating microstructure morphology to local stress fields, effect of clustering of inclusions on statistical descriptors identified in the paper, and effect of number of realizations of statistical volume elements (SVEs) on statistical descriptors.

[1]  R. Pyrz Correlation of Microstructure Variability and Local Stress Field in Two-Phase Materials , 1994 .

[2]  Somnath Ghosh,et al.  Quantitative characterization and modeling of composite microstructures by voronoi cells , 1997 .

[3]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[4]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[5]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[6]  B. Moran,et al.  On the Role of Interphases in the Transverse Failure of Fiber Composites , 1994 .

[7]  I. Daniel,et al.  Three-dimensional photoelastic analysis of a fiber-reinforced composite model , 1969 .

[8]  Somnath Ghosh,et al.  A two-dimensional automatic mesh generator for finite element analysis for random composites , 1991 .

[9]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[10]  B. Bochenek,et al.  Discrete Model of Fracture in Disordered Two-Phase Materials , 1995 .

[11]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[12]  A. Gokhale,et al.  Representative volume element for non-uniform micro-structure , 2002 .

[13]  Somnath Ghosh,et al.  Voronoi cell finite elements , 1994 .

[14]  Somnath Ghosh,et al.  Multiple scale computational model for damage in composite materials , 1999 .

[15]  I. Daniel,et al.  Investigation indicates that stress field obtained corresponds to the thermal-stress field produced by a difference in the coefficients of thermal expansion of the matrix and the inclusion material , 1962 .

[16]  R. Pyrz,et al.  IUTAM Symposium on Microstructure-Property Interactions in Composite Materials : proceedings of the IUTAM symposium held in Aalborg, Denmark, 22-25 August 1994 , 1995 .

[17]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[18]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[19]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[20]  I. Jasiuk,et al.  The influence of interface and arrangement of inclusions on local stresses in composite materials , 1997 .

[21]  Z. Hashin,et al.  Determination of Mechanical Properties of Interfacial Region between Fiber and Matrix in Organic Matrix Composites , 1990 .

[22]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[23]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[24]  I. Jasiuk,et al.  Fracture of random matrix-inclusion composites: scale effects and statistics , 1998 .

[25]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[26]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[27]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[28]  Subra Suresh,et al.  Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape , 1991 .

[29]  B. Bochenek,et al.  Topological disorder of microstructure and its relation to the stress field , 1998 .

[30]  Somnath Ghosh,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part II - With Interfacial Debonding , 2006 .

[31]  Tungyang Chen,et al.  Stress fields in composites with coated inclusions , 1989 .

[32]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[33]  E. Garboczi,et al.  The elastic moduli of a sheet containing circular holes , 1992 .

[34]  Somnath Ghosh,et al.  Tessellation-based computational methods for the characterization and analysis of heterogeneous microstructures , 1997 .

[35]  R. Becker,et al.  Simulation of strain localization and fracture between holes in an aluminum sheet , 1994 .

[36]  Tsu-Wei Chou,et al.  Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites , 1982 .

[37]  Somnath Ghosh,et al.  A material based finite element analysis of heterogeneous media involving Dirichlet tessellations , 1993 .

[38]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[39]  M. Thorpe,et al.  Elastic properties of rigid fiber-reinforced composites , 1995 .

[40]  R. Pyrz Quantitative description of the microstructure of composites. Part I: Morphology of unidirectional composite systems , 1994 .

[41]  Noriko Katsube,et al.  A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions , 1995 .

[42]  J.G.M. van Mier,et al.  Lattice model evaluation of progressive failure in disordered particle composites , 1997 .

[43]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[44]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[45]  Dan M. Frangopol,et al.  Probabilistic Mechanics & Structural Reliability , 1996 .

[46]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[47]  J. Takahashi,et al.  Random dispersion model of two-dimensional size distribution of second-phase particles , 2001 .

[48]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[49]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[50]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[51]  Ryszard Pyrz,et al.  Correlation between Fracture Toughness and the Microstructure Morphology in Transversely Loaded Unidirectional Composites , 1995 .

[52]  S. Meguid,et al.  Interacting circular inhomogeneities in plane elastostatics , 1993 .

[53]  L. J. Sluys,et al.  Numerical determination of representative volumes for granular materials , 2004 .