Regulating the lattice strain field by high-entropy strategy to realize the conformal growth of perovskites for efficient oxygen evolution

[1]  T. Hyeon,et al.  High‐Valence Metal‐Driven Electronic Modulation for Boosting Oxygen Evolution Reaction in High‐Entropy Spinel Oxide , 2023, Advanced Functional Materials.

[2]  Zhao‐Qing Liu,et al.  Activating Lattice Oxygen in Spinel ZnCo2O4 through Filling the Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution. , 2023, Angewandte Chemie.

[3]  Xien Liu,et al.  Electronic and Lattice Engineering of Ruthenium Oxide towards Highly Active and Stable Water Splitting , 2023, Advanced Energy Materials.

[4]  Huiyu Song,et al.  Composition-Tunable Co3–xFexMo3N Electrocatalysts for the Oxygen Evolution Reaction , 2023, ACS Energy Letters.

[5]  Xiaoying Hu,et al.  A general strategy for preparing hollow spherical multilayer structures of Oxygen-Rich vacancy transition metal Oxides, especially high entropy perovskite oxides , 2023, Chemical Engineering Journal.

[6]  Wei Zhou,et al.  Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. , 2023, Analytica chimica acta.

[7]  Mingwei Chen,et al.  Entropy-Stabilized Multicomponent Porous Spinel Nanowires of NiFeXO4 (X = Fe, Ni, Al, Mo, Co, Cr) for Efficient and Durable Electrocatalytic Oxygen Evolution Reaction in Alkaline Medium. , 2023, ACS nano.

[8]  Xiaolei Liang,et al.  Tailoring Spin State of Perovskite Oxides by Fluorine Atom Doping for Efficient Oxygen Electrocatalysis. , 2022, Small.

[9]  Zhenzhong Wu,et al.  Perovskites with Enriched Oxygen Vacancies as a Family of Electrocatalysts for Efficient Nitrate Reduction to Ammonia. , 2022, Small.

[10]  Jun Yu Li,et al.  Metal Affinity of Support Dictates Sintering of Gold Catalysts. , 2022, Journal of the American Chemical Society.

[11]  Yishu Gong,et al.  Perovskite catalysts with different dimensionalities for environmental and energy applications: A review , 2022, Separation and Purification Technology.

[12]  R. Che,et al.  Structural Defects in Phase‐Regulated High‐Entropy Oxides toward Superior Microwave Absorption Properties , 2022, Advanced Functional Materials.

[13]  Yuanjing Cui,et al.  Tuning the electronic structure of a metal–organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium , 2022, Carbon Energy.

[14]  S. Liu,et al.  High‐Entropy Catalyst—A Novel Platform for Electrochemical Water Splitting , 2022, Advanced Functional Materials.

[15]  Zongping Shao,et al.  High‐Entropy Materials for Water Electrolysis , 2022, Energy Technology.

[16]  Xiaoying Hu,et al.  Inducing the Cocktail Effect in Yolk-Shell High-Entropy Perovskite Oxides Using an Electronic Structural Design for Improved Electrochemical Applications , 2022, SSRN Electronic Journal.

[17]  Junliang Zhang,et al.  The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1-Fe O3-δ (0.2 ≤ x ≤ 1) perovskites in alkaline media , 2022, Chemical Engineering Journal.

[18]  Haiou Song,et al.  Identifying the Role of Oxygen Vacancy on Cobalt-Based Perovskites Towards Peroxymonosulfate Activation for Efficient Iohexol Degradation , 2022, SSRN Electronic Journal.

[19]  A. Harutyunyan,et al.  Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction , 2022, Advanced Energy Materials.

[20]  Matthew K. Horton,et al.  Persona of Transition Metal Ions in Solids: A Statistical Learning on Local Structures of Transition Metal Oxides , 2022, Advanced science.

[21]  Lu Wang,et al.  A Modular Co-assembly Strategy for Ordered Mesoporous Perovskite Oxides with Abundant Surface Active Sites. , 2022, Angewandte Chemie.

[22]  Shu‐Hong Yu,et al.  General Synthesis of Tube-like Nanostructured Perovskite Oxides with Tunable Transition Metal-Oxygen Covalency for Efficient Water Electrooxidation in Neutral Media. , 2022, Journal of the American Chemical Society.

[23]  Qing Zhang,et al.  Multiphase Nanosheet-nanowire Cerium Oxide and Nickel-cobalt Phosphide for Highly-efficient Electrocatalytic Overall Water Splitting , 2022, Applied Catalysis B: Environmental.

[24]  Yadong Li,et al.  Ru-Co Pair Sites Catalyst Boosts the Energetics for Oxygen Evolution Reaction. , 2022, Angewandte Chemie.

[25]  Junwei Lang,et al.  Superiority of Cubic Perovskites Oxides with Strong B‐O Hybridization for Oxygen‐Anion Intercalation Pseudocapacitance , 2022, Advanced Functional Materials.

[26]  Jun Zhou,et al.  Puffing ultrathin oxides with nonlayered structures , 2022, Science advances.

[27]  Yue Wang,et al.  High Configuration Entropy Activated Lattice Oxygen for O2 Formation on Perovskite Electrocatalyst , 2022, Advanced Functional Materials.

[28]  Jiaguo Yu,et al.  Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visible‐light photocatalytic H2 evolution , 2022, Interdisciplinary Materials.

[29]  R. Shahbazian‐Yassar,et al.  Electrochemical synthesis of high entropy hydroxides and oxides boosted by hydrogen evolution reaction , 2022, Cell Reports Physical Science.

[30]  C. Pao,et al.  A highly distorted ultraelastic chemically complex Elinvar alloy , 2022, Nature.

[31]  Wei‐Xue Li,et al.  Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts , 2021, Science.

[32]  K. Edalati,et al.  High-entropy ceramics: Review of principles, production and applications , 2021, Materials Science and Engineering: R: Reports.

[33]  G. Zheng,et al.  The influences of lattice distortion on the antiferroelectric transition and relaxation of oxygen vacancies in high-entropy perovskites (Bi0.2Na0.2Ba0.2K0.2X0.2)TiO3 with X=Ca, Sr or La , 2021 .

[34]  Chao Su,et al.  Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future , 2021, Energy & Fuels.

[35]  D. Nocera,et al.  Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction , 2021, Nature Communications.

[36]  Zongping Shao,et al.  High-Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. , 2021, Small.

[37]  De Chen,et al.  Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction , 2021 .

[38]  J. Ting,et al.  Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction , 2021, Advanced Functional Materials.

[39]  Jing Zhao,et al.  Exploring the film growth in perovskite solar cells , 2021 .

[40]  B. Yuliarto,et al.  Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction , 2021 .

[41]  Yuan Wu,et al.  Short-range ordering and its effects on mechanical properties of high-entropy alloys , 2021 .

[42]  Yadong Li,et al.  Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides , 2021, Energy & Environmental Science.

[43]  L. Cui,et al.  Selective dissolution of A-site cations of La0.6Sr0.4Co0.8Fe0.2O3 perovskite catalysts to enhance the oxygen evolution reaction , 2020 .

[44]  Liangbing Wang,et al.  High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities , 2020 .

[45]  Manfred Martin,et al.  An innovative approach to design SOFC air electrode materials: high entropy La1−xSrx(Co,Cr,Fe,Mn,Ni)O3−δ (x = 0, 0.1, 0.2, 0.3) perovskites synthesized by the sol–gel method , 2020, Journal of Materials Chemistry A.

[46]  P. Concepción,et al.  Insights into the Promotion with Ru of Co/TiO2 Fischer–Tropsch Catalysts: An In Situ Spectroscopic Study , 2020 .

[47]  Yun Wang,et al.  Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: Characterization, kinetic and mechanism studies. , 2020, Journal of colloid and interface science.

[48]  Zhichuan J. Xu,et al.  A review on fundamentals for designing oxygen evolution electrocatalysts. , 2020, Chemical Society reviews.

[49]  X. Lou,et al.  Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction , 2020, Advanced Functional Materials.

[50]  K. Ayers,et al.  A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser , 2019, Nature Nanotechnology.

[51]  Qingsong Wang,et al.  High‐Entropy Oxides: Fundamental Aspects and Electrochemical Properties , 2019, Advanced materials.

[52]  Christopher L. Brown,et al.  Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. , 2018, Journal of the American Chemical Society.

[53]  Zongping Shao,et al.  Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications , 2018, Small Methods.

[54]  Xin Wang,et al.  Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives , 2017 .

[55]  Shen-ming Chen,et al.  Sol‐Gel Synthesis of Carbon‐Coated LaCoO3 for Effective Electrocatalytic Oxidation of Salicylic Acid , 2017 .

[56]  L. Jia,et al.  Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation , 2015 .

[57]  William G. Hardin,et al.  Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. , 2014, Nature materials.

[58]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[59]  P. Praserthdam,et al.  The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts , 2008 .

[60]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[66]  Kun Qian,et al.  Covalency competition triggers Fe-Co synergistic catalysis for boosted Fenton-like reactions , 2023, Applied Catalysis B: Environmental.

[67]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[68]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .