ON DUAL BAER MODULES

Abstract In this paper we introduce -non-cosingular modules, dual Baer modules and -modules. We prove that a module M is lifting and -non-cosingular if and only if it is a dual Baer and -module. Rings for which all modules are dual Baer are precisely determined. We also give a necessary condition for a finite direct sum of dual Baer modules to be dual Baer.

[1]  S. Rizvi,et al.  Dual Rickart Modules , 2011 .

[2]  S. Rizvi,et al.  On direct sums of Baer modules , 2009 .

[3]  S. Rizvi,et al.  On 𝒦-Nonsingular Modules and Applications , 2007 .

[4]  S. Rizvi,et al.  Baer and Quasi-Baer Modules , 2004 .

[5]  N. Vanaja,et al.  MODULES FOR WHICH EVERY SUBMODULE HAS A UNIQUE COCLOSURE , 2002 .

[6]  M. Alkan,et al.  On Summand Sum and Summand Intersection Property of Modules , 2002 .

[7]  Y. Talebi,et al.  The Torsion Theory Cogenerated by M-Small Modules , 2002 .

[8]  D. Keskin On lifting modules , 2000 .

[9]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[10]  A. Facchini Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules , 1998 .

[11]  John Dauns Modules and Rings , 1994 .

[12]  R. Camps,et al.  On semilocal rings , 1993 .

[13]  Robert Wisbauer,et al.  Foundations of module and ring theory , 1991 .

[14]  Saad H. Mohamed,et al.  Continuous and Discrete Modules , 1990 .

[15]  D. Huynh A generalization of right pci rings , 1990 .

[16]  J. García Properties of direct summands of modules , 1989 .

[17]  Zheng-Xu He Characterizations of Noetherian and hereditary rings , 1985 .

[18]  Robert W. Miller,et al.  Factors of cofinitely generated injective modules , 1976 .

[19]  K. Rangaswamy Representing Baer rings as endomorphism rings , 1970 .

[20]  Cleon R. Yohe On rings in which every ideal is the annihilator of an element , 1968 .

[21]  K. Rangaswamy Abelian groups with endomorphic images of special types , 1967 .

[22]  I. Kaplansky Modules over Dedekind rings and valuation rings , 1952 .