Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data
暂无分享,去创建一个
[1] L. Devroye. On the Asymptotic Probability of Error in Nonparametric Discrimination , 1981 .
[2] Daniil Ryabko. Online learning of conditionally I.I.D. data , 2004, ICML '04.
[3] Paul H. Algoet,et al. Universal Schemes for Learning the Best Nonlinear Predictor Given the Infinite Past and Side Information , 1999, IEEE Trans. Inf. Theory.
[4] David Gamarnik. Extension of the PAC framework to finite and countable Markov chains , 2003, IEEE Trans. Inf. Theory.
[5] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[6] Sidney J. Yakowitz,et al. Weakly convergent nonparametric forecasting of stationary time series , 1997, IEEE Trans. Inf. Theory.
[7] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[8] A. Dawid. Conditional Independence in Statistical Theory , 1979 .
[9] Sanjeev R. Kulkarni,et al. Rates of convergence of nearest neighbor estimation under arbitrary sampling , 1995, IEEE Trans. Inf. Theory.
[10] Sanjeev R. Kulkarni,et al. Data-dependent kn-NN and kernel estimators consistent for arbitrary processes , 2002, IEEE Trans. Inf. Theory.
[11] 中澤 真,et al. Devroye, L., Gyorfi, L. and Lugosi, G. : A Probabilistic Theory of Pattern Recognition, Springer (1996). , 1997 .