Query Order and Self-Specifying Machines

We study the computational power of machines that specify their own acceptance types, and we show that they accept exactly the languages in R_m^{#P}(NP). We study the effect of query order on computational power, and show that P^{BH_j[1]:BH_k[1]}---the languages computable via a polynomial-time machine given one query to the $j$th level of the boolean hierarchy followed by one query to the $k$th level of the boolean hierarchy---equals R^p_{j+2k--1-tt}(NP) if $j$ is even and $k$ is odd, and equals R^p_{j+2k-tt} otherwise. Thus, unless the polynomial hierarchy collapses, it holds that for each 1 \leq j \leq k: P^{BH_j[1]:BH_k[1]} = P^{BH_k[1]:BH_j[1]} \Longleftrightarrow (j=k) \vee (j is even \wedge k = j+1). We extend our analysis to apply to more general query classes.

[1]  Denis Thérien,et al.  Logspace and Logtime Leaf Languages , 1996, Inf. Comput..

[2]  Klaus W. Wagner,et al.  Some Observations on the Connection Between Counting an Recursion , 1986, Theor. Comput. Sci..

[3]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[4]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..

[5]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[6]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[7]  Stephen A. Fenner,et al.  Gap-deenable Counting Classes , 1991 .

[8]  Gerd Wechsung,et al.  On the Boolean closure of NP , 1985, FCT.

[9]  Jin-Yi Cai,et al.  PSPACE Survives Constant-Width Bottlenecks , 1991, Int. J. Found. Comput. Sci..

[10]  Alan L. Selman,et al.  Qualitative Relativizations of Complexity Classes , 1985, J. Comput. Syst. Sci..

[11]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[12]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[13]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[14]  A. Stephen,et al.  Gap-De nable Counting Classes , 1991 .

[15]  Thomas Thierauf,et al.  Complexity-Restricted Advice Functions , 1994, SIAM J. Comput..

[16]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[17]  Sanjay Jain,et al.  On the Limitations of Locally Robust Positive Reductions , 1989, FSTTCS.

[18]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[19]  Paul Young,et al.  Strong Separations for the Boolean Hierarchy over RP , 1990, Int. J. Found. Comput. Sci..

[20]  Richard Chang,et al.  On the Structure of NP Computations under Boolean Operators , 1991 .

[21]  Mark W. Krentel The complexity of optimization problems , 1986, STOC '86.

[22]  Jin-Yi Cai,et al.  On the Power of Parity Polynomial Time , 1989, STACS.

[23]  Heribert Vollmer,et al.  The satanic notations , 1995, SIGACT News.

[24]  Thomas Schwentick,et al.  The Power of the Middle Bit of a #P Function , 1995, J. Comput. Syst. Sci..

[25]  Jin-Yi Cai Probability One Separation of the Boolean Hierarchy , 1987, STACS.

[26]  Frederic Green Lower Bounds for Depth-Three Circuits With Equals and Mod-Gates , 1995, STACS.

[27]  Jörg Rothe,et al.  Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets , 1997, SIAM J. Comput..

[28]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[29]  Janos Simon On some central problems in computational complexity , 1975 .

[30]  Ian Parberry,et al.  On the Construction of Parallel Computers from Various Bases of Boolean Functions , 1986, Theor. Comput. Sci..

[31]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[32]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[33]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[34]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[35]  Mitsunori Ogihara On Serializable Languages , 1994, Int. J. Found. Comput. Sci..

[36]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..