Partially Adaptive Estimation Via the Maximum Entropy Densities

We propose a partially adaptive estimator based on information theoretic maximum entropy estimates of the error distribution. The maximum entropy (maxent) densities have simple yet flexible functional forms to nest most of the mathematical distributions. Unlike the nonparametric fully adaptive estimators, our parametric estimators do not involve choosing a bandwidth or trimming, and only require estimating a small number of nuisance parameters, which is desirable when the sample size is small. Monte Carlo simulations suggest that the proposed estimators fare well with non-normal error distributions. When the errors are normal, the efficiency loss due to redundant nuisance parameters is negligible as the proposed error densities nest the normal. The proposed partially adaptive estimator compares favorably with existing methods, especially when the sample size is small. We apply the estimator to a bio-pharmaceutical example and a stochastic frontier model.

[1]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[2]  James B. McDonald,et al.  Partially Adaptive Estimation of Regression Models via the Generalized T Distribution , 1988, Econometric Theory.

[3]  R. Hogg,et al.  On adaptive estimation , 1984 .

[4]  Zhijie Xiao,et al.  A Nonparametric Regression Estimator that Adapts to Error Distribution of Unknown Form , 2001 .

[5]  Jens-Peter Kreiss On Adaptive Estimation in Stationary ARMA Processes , 1987 .

[6]  Oliver Linton,et al.  Adaptive Estimation in ARCH Models , 1993, Econometric Theory.

[7]  Charles F. Manski,et al.  Monte Carlo evidence on adaptive maximum likelihood estimation of a regression , 1987 .

[8]  Qi Li,et al.  Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form , 1994 .

[9]  Liang-sheng Lu,et al.  [Expression of fusion proteins in beta(2)GP I gene-transfected HEp-2 cells and its clinical application]. , 2002, Zhonghua yi xue za zhi.

[10]  C. J. Stone,et al.  Adaptive Maximum Likelihood Estimators of a Location Parameter , 1975 .

[11]  A. Barron,et al.  APPROXIMATION OF DENSITY FUNCTIONS BY SEQUENCES OF EXPONENTIAL FAMILIES , 1991 .

[12]  Whitney K. Newey,et al.  Adaptive estimation of regression models via moment restrictions , 1988 .

[13]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[14]  Ximing Wu,et al.  Calculation of Maximum Entropy Densities with Application to Income Distribtuions , 2002 .

[15]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[16]  Richard A. Highfield,et al.  Calculation of maximum entropy distributions and approximation of marginalposterior distributions , 1988 .

[17]  W. Greene,et al.  Economies of Scale in U.S. Electric Power Generation , 1976, Journal of Political Economy.

[18]  W. Kirby,et al.  Algebraic boundedness of sample statistics , 1974 .

[19]  Robert F. Phillips Partially adaptive estimation via a normal mixture , 1994 .

[20]  Robert V. Hogg,et al.  On Adaptive M-Regression , 1988 .

[21]  L. Cobb,et al.  Estimation and Moment Recursion Relations for Multimodal Distributions of the Exponential Family , 1983 .

[22]  Richard E. Quandt,et al.  Measurement in Economics: Studies in Mathematical Economics and Econometrics in Memory of Yehuda Grunfeld. , 1963 .

[23]  J. McDonald Partially adaptive estimation of ARMA time series models , 1989 .

[24]  Aldo Tagliani,et al.  A note on proximity of distributions in terms of coinciding moments , 2003, Appl. Math. Comput..

[25]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[26]  James B. McDonald,et al.  A comparison of some robust, adaptive, and partially adaptive estimators of regression models , 1993 .

[27]  C. Stein Efficient Nonparametric Testing and Estimation , 1956 .

[28]  Charles F. Manski,et al.  Adaptive estimation of non–linear regression models , 1984 .

[29]  Algebraic bounds on standardized sample moments , 1987 .

[30]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[31]  Douglas G. Steigerwald On the finite sample behavior of adaptive estimators , 1992 .

[32]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[33]  Rudolf Beran,et al.  Asymptotically Efficient Adaptive Rank Estimates in Location Models , 1974 .

[34]  Marc Nerlove,et al.  RETURNS TO SCALE IN ELECTRICITY SUPPLY , 1961 .

[35]  J. Perloff,et al.  GMM estimation of a maximum entropy distribution with interval data , 2007 .