Numerical solution of fuzzy Fredholm integral equations by the Lagrange interpolation based on the extension principle

In this paper, a numerical procedure is proposed for solving the fuzzy linear Fredholm integral equations of the second kind by using Lagrange interpolation based on the extension principle. For this purpose, a numerical algorithm is presented, and two examples are solved by applying this algorithm. Moreover, a theorem is proved to show the convergence of the algorithm and obtain an upper bound for the distance between the exact and the numerical solutions.

[1]  John N. Mordeson,et al.  Fuzzy Integral Equations , 1995, Inf. Sci..

[2]  Robert Fullér,et al.  Introduction to neuro-fuzzy systems , 1999, Advances in soft computing.

[3]  Abraham Kandel,et al.  Numerical solutions of fuzzy differential and integral equations , 1999, Fuzzy Sets Syst..

[4]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[5]  Sorin G. Gal Approximation Theory in Fuzzy Setting , 2000 .

[6]  J. Nieto,et al.  Bounded solutions for fuzzy differential and integral equations , 2006 .

[7]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[8]  M. T. Rashed,et al.  Numerical solutions of functional integral equations , 2004, Appl. Math. Comput..

[9]  S C Arora,et al.  SOLUTION OF INTEGRAL EQUATIONS IN FUZZY SPACES , 1998 .

[10]  Esmail Babolian,et al.  Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method , 2005, Appl. Math. Comput..

[11]  Abraham Kandel,et al.  Solutions to fuzzy integral equations with arbitrary kernels , 1999, Int. J. Approx. Reason..

[12]  Barnabás Bede,et al.  Quadrature rules for integrals of fuzzy-number-valued functions , 2004, Fuzzy Sets Syst..

[13]  Alexandru Mihai Bica,et al.  Error estimation in the approximation of the solution of nonlinear fuzzy Fredholm integral equations , 2008, Inf. Sci..

[14]  Esmail Babolian,et al.  Numerical method for solving linear Fredholm fuzzy integral equations of the second kind , 2007 .

[15]  Young Chel Kwun,et al.  Existence of solutions of fuzzy integral equations in Banach spaces , 1995 .

[16]  Song Shiji,et al.  On the basic solutions to the generalized fuzzy integral equation , 1998 .

[17]  Y. Hayashi,et al.  Fuzzy integral equations , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[18]  Shiji Song,et al.  Existence and comparison theorems to Volterra fuzzy integral equation in (En, D)1 , 1999, Fuzzy Sets Syst..

[19]  Jong Yeoul Park,et al.  The approximate solutions of fuzzy functional integral equations , 2000, Fuzzy Sets Syst..

[20]  Congxin Wu,et al.  On Henstock integral of fuzzy-number-valued functions (I) , 2001, Fuzzy Sets Syst..

[21]  Jong Yeoul Park,et al.  On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations , 2000, Fuzzy Sets Syst..

[22]  Jong Yeoul Park,et al.  Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations , 1999, Fuzzy Sets Syst..

[23]  Esmail Babolian,et al.  A numerical method for solving a class of functional and two dimensional integral equations , 2008, Appl. Math. Comput..

[24]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[25]  P. V. Subrahmanyam,et al.  A note on fuzzy Volterra integral equations , 1996, Fuzzy Sets Syst..

[26]  Jong Yeoul Park,et al.  A note on fuzzy integral equations , 1999, Fuzzy Sets Syst..

[27]  Mohammad Ali Fariborzi Araghi,et al.  The numerical solution of linear fuzzy Fredholm integral equations of the second kind by using finite and divided differences methods , 2010, Soft Comput..

[28]  G. Anastassiou Handbook of Analytic Computational Methods in Applied Mathematics , 2000 .

[29]  H. Sadeghi Goghary,et al.  Two computational methods for solving linear Fredholm fuzzy integral equation of the second kind , 2006, Appl. Math. Comput..

[30]  James J. Buckley,et al.  Fuzzy integral equations , 2000 .