A Distributed Memory Implementation of the Nonsymmetric QR Algorithm
暂无分享,去创建一个
[1] Al Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a distributed-memory multiprocessor , 1990, Parallel Comput..
[2] Robert A. van de Geijn,et al. Deferred Shifting Schemes for Parallel QR Methods , 1993, SIAM J. Matrix Anal. Appl..
[3] D. Sorensen,et al. Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .
[4] Daniel Boley,et al. A parallel QR algorithm for the nonsymmetric eigenvalue problem , 1989 .
[5] James Demmel,et al. Modeling the benefits of mixed data and task parallelism , 1995, SPAA '95.
[6] Greg Henry. Improving the Unsymmetric Parallel QR Algorithm on Vector Machines , 1993, PPSC.
[7] James Demmel,et al. The Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory Parallel Computers , 1997, SIAM J. Sci. Comput..
[8] Jack J. Dongarra,et al. A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form , 1995, Parallel Comput..
[9] Gregory Mark Henry. Improving data re-use in eigenvalue-related computations , 1994 .
[10] Robert A. van de Geijn. Implementing the qr-algorithm on an array of processors , 1987 .
[11] Bruce Hendrickson,et al. The Torus-Wrap Mapping for Dense Matrix Calculations on Massively Parallel Computers , 1994, SIAM J. Sci. Comput..
[12] David S. Watkins,et al. Shifting Strategies for the Parallel QR Algorithm , 1994, SIAM J. Sci. Comput..
[13] G. W. Stewart,et al. A parallel implementation of the QR-algorithm , 1987, Parallel Comput..
[14] G. A. Geist,et al. Finding eigenvalues and eigenvectors of unsymmetric matrices using a hypercube multiprocessor , 1989, C3P.
[15] J. Demmel,et al. An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .
[16] E. Jessup. A case against a divide and conquer approach to the nonsymmetric eigenvalue problem , 1993 .
[17] David S. Watkins,et al. The transmission of shifts and shift blurring in the QR algorithm , 1996 .
[18] Robert A. van de Geijn,et al. Storage Schemes for Parallel Eigenvalue Algorithms , 1988 .
[19] Bo Kågström,et al. GEMM-Based Level-3 BLAS , 1991 .
[20] James Demmel,et al. ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Computers - Design Issues and Performance , 1995, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.
[21] L. Kaufman,et al. Squeezing the most out of eigenvalue solvers on high-performance computers , 1986 .
[22] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[23] Steven Huss-Lederman,et al. A Parallelizable Eigensolver for Real Diagonalizable Matrices with Real Eigenvalues , 1997, SIAM J. Sci. Comput..
[24] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[25] R. Byers. Numerical Stability and Instability in Matrix Sign Function Based Algorithms , 1986 .
[26] James Demmel,et al. On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..
[27] Jack J. Dongarra,et al. Algorithm 710: FORTRAN subroutines for computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form , 1990, TOMS.
[28] Vipin Kumar,et al. The Scalability of FFT on Parallel Computers , 1993, IEEE Trans. Parallel Distributed Syst..
[29] Eleanor Chu,et al. New Distributed-Memory Parallel Algorithms for Solving Nonsymmetric Eigenvalue Problems , 1995, PPSC.
[30] L. Auslander,et al. On parallelizable eigensolvers , 1992 .
[31] Anshul Gupta,et al. On the scalability of FFT on parallel computers , 1990, [1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation.
[32] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[33] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[34] Jack J. Dongarra,et al. A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem , 1993, SIAM J. Sci. Comput..
[35] Robert A. van de Geijn,et al. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..