Unusual crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein-condensate superconductivity in iron chalcogenides

[1]  H. Tajima,et al.  Mechanisms of screening or enhancing the pseudogap throughout the two-band Bardeen-Cooper-Schrieffer to Bose-Einstein condensate crossover , 2020, Physical Review B.

[2]  P. Hirschfeld,et al.  Interorbital nematicity and the origin of a single electron Fermi pocket in FeSe , 2020, Physical Review B.

[3]  R. Arita,et al.  Gate-controlled BCS-BEC crossover in a two-dimensional superconductor , 2020, Science.

[4]  Shik Shin,et al.  Bose-Einstein condensation superconductivity induced by disappearance of the nematic state , 2020, Science Advances.

[5]  I. Eremin,et al.  Non-local dxy nematicity and the missing electron pocket in FeSe , 2020, 2009.00507.

[6]  Y. Uwatoko,et al.  NMR study under pressure on the iron-based superconductor FeSe1−xSx (x = 0.12 and 0.23): Relationship between nematicity and AF fluctuations , 2020 .

[7]  T. Shibauchi,et al.  Exotic Superconducting States in FeSe-based Materials , 2020, Journal of the Physical Society of Japan.

[8]  Q. Si,et al.  Multiorbital singlet pairing and d + d superconductivity , 2019, 1911.13274.

[9]  O. Simard,et al.  Superfluid stiffness in cuprates: Effect of Mott transition and phase competition , 2019, Physical Review B.

[10]  A. Schofield,et al.  Quenched nematic criticality and two superconducting domes in an iron-based superconductor , 2019, Nature Physics.

[11]  T. Shibauchi,et al.  Electrical resistivity across a nematic quantum critical point , 2019, Nature.

[12]  T. Shibauchi,et al.  Quantum Vortex Core and Missing Pseudogap in the Multiband BCS-BEC Crossover Superconductor FeSe. , 2019, Physical review letters.

[13]  A. Vagov,et al.  Screening of pair fluctuations in superconductors with coupled shallow and deep bands: A route to higher-temperature superconductivity , 2018, Physical Review B.

[14]  Thomas Wolf,et al.  Calorimetric evidence of nodal gaps in the nematic superconductor FeSe , 2018, Physical Review B.

[15]  Jian-Xin Zhu,et al.  Orbital-selective superconductivity in the nematic phase of FeSe , 2018, Physical Review B.

[16]  H. Kontani,et al.  Abrupt Change of the Superconducting Gap Structure at the Nematic Quantum Critical Point in FeSe 1-x S x , 2018 .

[17]  Jian-Xin Zhu,et al.  Orbital Selectivity Enhanced by Nematic Order in FeSe. , 2018, Physical review letters.

[18]  G. Strinati,et al.  The BCS–BEC crossover: From ultra-cold Fermi gases to nuclear systems , 2018, 1802.05997.

[19]  Yuya Suzuki,et al.  Superconducting gap anisotropy sensitive to nematic domains in FeSe , 2018, Nature Communications.

[20]  T. Shibauchi,et al.  Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx , 2017, Science Advances.

[21]  V. Pudalov,et al.  Specific heat of FeSe: Two gaps with different anisotropy in superconducting state , 2017 .

[22]  M. Watson,et al.  The Key Ingredients of the Electronic Structure of FeSe , 2017, 1706.00338.

[23]  H. Kontani,et al.  Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx , 2017, Proceedings of the National Academy of Sciences.

[24]  Guanyu Chen,et al.  BCS-like critical fluctuations with limited overlap of Cooper pairs in FeSe , 2017, 1704.08850.

[25]  Y. C. Chan,et al.  Maximizing Tc by tuning nematicity and magnetism in FeSe1−xSx superconductors , 2017, Nature Communications.

[26]  M. Randeria,et al.  Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySexTe1−x: An angle-resolved photoemission study , 2017, Science Advances.

[27]  E. Berg,et al.  Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point , 2016, Proceedings of the National Academy of Sciences.

[28]  P. Hirschfeld,et al.  Discovery of orbital-selective Cooper pairing in FeSe , 2016, Science.

[29]  K. Ishida,et al.  Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS–BEC crossover , 2016, Nature Communications.

[30]  T. Shibauchi,et al.  Nematic quantum critical point without magnetism in FeSe1−xSx superconductors , 2016, Proceedings of the National Academy of Sciences.

[31]  A. Chubukov,et al.  Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO 3 , 2016, 1601.01678.

[32]  H. Tajima,et al.  Specific heat and effects of pairing fluctuations in the BCS-BEC-crossover regime of an ultracold Fermi gas , 2015, 1509.07232.

[33]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[34]  D. Knyazev,et al.  Superconducting properties of sulfur-doped iron selenide , 2015, 1501.07346.

[35]  T. Maier,et al.  Pairing interaction near a nematic quantum critical point of a three-band CuO2 model , 2014 .

[36]  H. von Löhneysen,et al.  Field-induced superconducting phase of FeSe in the BCS-BEC cross-over , 2014, Proceedings of the National Academy of Sciences.

[37]  R. Arita,et al.  Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements , 2014, 1405.7749.

[38]  T. Örd,et al.  Shrinking of the fluctuation region in a two-band superconductor , 2014, 1404.4455.

[39]  T. Wolf,et al.  Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe , 2013, 1303.2026.

[40]  H. D. Yang,et al.  Coexistence of isotropic and extended s-wave order parameters in FeSe as revealed by low-temperature specific heat , 2011, 1109.5225.

[41]  D. Podolsky,et al.  Shallow pockets and very strong coupling superconductivity in FeSexTe1−x , 2011, Nature Physics.

[42]  M. Rosseinsky,et al.  Anisotropic fluctuations and quasiparticle excitations in FeSe0.5Te0.5 , 2010, 1007.3914.

[43]  P. Canfield,et al.  Upper and lower critical magnetic fields of superconducting NdFeAsO1−xFx single crystals studied by Hall-probe magnetization and specific heat , 2008, 0812.3953.

[44]  C. S. D. Melo When fermions become bosons: Pairing in ultracold gases , 2008 .

[45]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[46]  K. Levin,et al.  BCS BEC crossover: From high temperature superconductors to ultracold superfluids , 2004, cond-mat/0404274.

[47]  C. Pethick,et al.  Bose-Einstein Condensation in Dilute Gases , 2001 .

[48]  M. Howson,et al.  3d X-Y scaling of the specific heat of YBa2Cu3O7−δ single crystals , 1994 .

[49]  T. Wolf,et al.  LOW TEMPERATURE SPECIFIC HEAT OF YBa2Cu3O7 , 1993 .

[50]  Liu,et al.  Specific heat of single crystals of YBa2Cu3O7- delta : Fluctuation effects in a bulk superconductor. , 1988, Physical review letters.

[51]  Valery L. Pokrovsky,et al.  Properties of ordered, continuously degenerate systems , 1979 .

[52]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[53]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[54]  E. Helfand,et al.  Temperature and purity dependence of the superconducting critical field, H/sub c2/ , 1964 .

[55]  Evolution of the Fermi Surface of the Nematic Superconductors FeSe1-xSx , 2017 .

[56]  W. Kwok,et al.  Anisotropic phase diagram and superconducting fluctuations of single-crystalline SmFeAsO , 2014 .

[57]  M. Randeria,et al.  The BCS-BEC crossover and the unitary fermi gas , 2012 .